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1 Convex Sets

1.1 Definition and Examples

We begin by defining convex sets.

Definition 1.1. A set X ⊂ Rn is said to be convex if

λx+ (1− λ)y ∈ X for all x, y ∈ X, λ ∈ [0, 1].

For x, y ∈ X, the set of all points λx + (1 − λ)y for λ ∈ [0, 1] is called line segment.
Hence, a set X ⊂ Rn is convex if the line segment of any pairs of points from X is
contained in X. Figure 1.1 depicts two convex and one nonconvex set.

y

x x

y
y

x

Figure 1.1: Two convex sets and one nonconvex set. The set on the right is nonconvex.

For λ ∈ [0, 1] and x, y ∈ X, the point λx+ (1− λ)y is called a convex combination of
x and y.

We provide simple examples of convex sets.

Example 1.2. 1. The Euclidean space Rn is a convex set.
2. The empty set ∅ is convex.
3. For each x ∈ Rn, the singleton {x} is a convex set.
4. The solution set of an arbitrary (finite or infinite) system of linear inequalities,

X = {x ∈ Rn : aTαx ≤ bα, α ∈ A},

is convex, where aα ∈ Rn and bα ∈ R, and A is some (index) set. See Figure 1.5
for an example.
To establish this assertion, let x, y ∈ X and let λ ∈ [0, 1]. We have

aTαx ≤ bα, aTαy ≤ bα, for all α ∈ A.
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1 Convex Sets

Hence for all α ∈ A,

aTα [λx+ (1− λ)y] = λaTαx+ (1− λ)aTαy

≤ λbα + (1− λ)bα

= b.

We obtain λx+ (1− λ)y ∈ X.

Linear Subspaces

A set L ⊂ Rn is called a linear subspace of Rn if it is nonempty and λx + µy ∈ L for
all x, y ∈ L and λ, µ ∈ R. Each linear subspace L of Rn contains the zero vector
0 = (0, . . . , 0) ∈ Rn, as L is nonempty and hence 0 · x + 0 · x ∈ L for all x ∈ L. For
example, the set L = {x ∈ R2 : (−1, 1)Tx = 0} is a linear subspace of R2; see Figure 1.2.

x1

x2

0

L

a

Figure 1.2: Linear subspace L = {x ∈ R2 : aTx = 0} in R2 with a = (−1, 1) ∈ R2. The
coordinate system’s origin is 0. A point x ∈ R2 is in L if and only if it is
orthogonal to a.

The smallest linear subspace of Rn is the singleton {0}. Linear subspaces are convex
sets, as the definitions of linear subspaces and convex sets show.
Linear subspaces can be constructed through other sets. For a nonempty set X ⊂ Rn,

we call all vectors of the form
∑m

i=1 λix
i withm ∈ N, λi ∈ R, and xi ∈ X for i = 1, . . . ,m

a linear combination of the points x1, . . . , xm. Moreover, we denote by Lin(X) the set
of all finite linear combinations of elements of X. The set Lin(X) is called linear span
of X. It is the smallest linear subspace containing X, that is, if L is a linear subspace
with X ⊂ L, then Lin(X) ⊂ L. In particular, if L is a linear subspace of Rn, then we
have Lin(L) = L.

Let x1, . . . , xm be a collection of m vectors in Rn. The collection is called linearly
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1 Convex Sets

independent if no nontrival combination of these points is zero, that is, if

m∑
i=1

λix
i = 0 implies λi = 0, i = 0, . . . ,m.

Each linear subspace of Rn has a basis. The (linear) dimension of a linear subspace L
is the number of elements in a basis of L. A linear subspace L of Rn can be represented
by the solution set of finitely many homogeneous linear equations, that is, L = {x ∈
Rn : aTi x = 0, i = 1, . . . ,m} for some ai ∈ Rn and m ∈ N. Let A ∈ Rm×n be a
matrix such that its ith row is equal to aTi . Using this definition, we can write L = {x ∈
Rn : Ax = 0}. Let us provide details for these assertions. Let L ⊂ Rn be a linear subspace
with dimension r ∈ N. Then there exists a basis of m := n− r vectors a1, . . . , am of the
linear subspace L⊥ := {y ∈ Rn : yTx = 0 for all x ∈ L}, the orthogonal complement of
L. We let aTi be the rows of a matrix A ∈ Rm×n. The matrix A has rank m = n − r
and we have Ax = 0 for all x ∈ L. Since L has dimension r and {x ∈ Rn : Ax = 0} has
dimension n−m = n− (n− r) = r, we obtain L = {x ∈ Rn : Ax = 0}. Alternatively, we
can write L = {x ∈ Rn : ∃y ∈ Rr with x = By}, where the columns of B ∈ Rn×r consist
of a basis of L. We have AB = 0.

Affine Subspaces

A set M ⊂ Rn is called an affine subspace if λx+µy ∈M for all x, y ∈M and λ, µ ∈ R
with λ+µ = 1. For xi ∈M and λi ∈ R with

∑m
i=1 λi = 1, the vector

∑m
i=1 λix

i is called
affine combination of the points x1, . . . , xm. Let X ⊂ Rn be a nonempty set. We denote
by Aff(X) the set of all finite affine combinations of elements of X. The set Aff(X) is
called affine hull of X. The affine hull of X is the smallest affine subspace containing
X.
A nonempty set M ⊂ Rn is an affine subspace of Rn if and only if there exists a ∈M

such that L :=M − a := {y = x− a : x ∈M} is a linear subspace of Rn. In this case, we
have a ∈ M and L = M − b for all b ∈ M . Moreover, an affine subspace M is a linear
subspace if and only if 0 ∈M . The affine dimension of M is the linear dimension of the
linear subspace L.
These facts ensure that a nonempty affine subspace M of Rn is a set given by M =

a + L := {a + x : x ∈ L}, where L ⊂ Rn is a linear subspace of Rn and a ∈ Rn is a
vector. Geometrically, affine subspaces are shifts of linear subspaces by some vector. As
discussed above, L can be represented as the solution set to finitely many homogeneous
linear questions. As a result, M can be written as the solution set of finitely many
nonhomogeneous linear equations, that is, M = {x ∈ Rn : aTi x = aTai, i = 1, . . . ,m},
where ai ∈ Rn, i = 1, . . . ,m are the vectors that define the linear subspace L. Figures 1.3
and 1.4 provide illustrations.
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1 Convex Sets

x2

x1

x3

0

w

a

w + L = w + {x ∈ R3 : aTx = 0}

Figure 1.3: An affine subspaceM in R3 given by w+L for some linear subspace L ⊂ R3.
The affine subspace M is obtained by shifting L by the vector a. Here
w = (0, 0, 1) and L = {x ∈ R3 : aTx = 0}. The coordinate systems’s origin
is 0.

x1 x2

x3

w + Lw

Figure 1.4: An affine subspace M in R3 given by a+L for some linear subspace L ⊂ R3.
The affine subspace M is obtained by shifting L by the vector a.

For any set X ⊂ Rn with a ∈ X, we have

Aff(X) = a+ Lin(X − a).

Let x0, . . . , xm be a collection of m+ 1 vectors in Rn. The collection is called affinely
independent if no nontrival combination of these points with zero sum coefficients is zero,
that is, if

m∑
i=0

λix
i = 0 and

m∑
i=0

λi = 0 implies λi = 0, i = 0, . . . ,m.

We find that x0, . . . , xm are affinely independent if and only if the vectors (xi, 1) ∈ Rn+1,
i = 0, . . . ,m are linearly independent. Here, (xi, 1) is the vector xi augmented by adding
the component 1 to it. Moreover, the vectors x0, . . . , xm are affinely independent if and
only if x1 − x0, . . . , xm − x0 is linearly independent.

Let M ⊂ Rn be a nonempty affine subspace of dimension m. Then we can write
M = a+L = a+ {x ∈ Rn : Ax = 0} for some matrix A ∈ Rn−m×n and a vector a ∈ Rn.
Alternatively, we can write M = {x ∈ Rn : ∃y ∈ Rm with x = By−a}, where B ∈ Rn×m
with AB = 0.
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1 Convex Sets

Polyhedral Sets

A set X ⊂ Rn is called polyhedral if it takes the form

X = {x ∈ Rn : Ax ≤ b},

for some matrix A ∈ Rm×n, a vector b ∈ Rm, and a natural number m ∈ N. If aTi is the
ith row of the matrix A, we may also write

X = {x ∈ Rn : Ax ≤ b} = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}.

In other words, a set is polyhedral if it is the solution set of a finite system of nonstrict
linear inequalities. Figure 1.5 depicts a polyhedral set.

a1
a2

a3

a4

a5

Figure 1.5: A polyhedral set given by five nonstrict linear inequalities.

A bounded nonempty polyhedral set is called polytope. Figures 1.5 and 1.6 depict
polytopes.

Figure 1.6: A polytope.

Polyhedral sets are convex. To verify this assertion, let X = {x ∈ Rn : Ax ≤ b}. Let x,
y ∈ X and let λ ∈ [0, 1]. We have A[λx+(1−λ)y] = λAx+(1−λ)Ay ≤ λb+(1−λ)b = b.
Hence λx+ (1− λ)y ∈ X. As a result, polyhedral sets are convex.
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1 Convex Sets

Norm balls

For each norm ∥ · ∥ on Rn, the unit norm ball {x ∈ Rn : ∥x∥ ≤ 1} is convex. Before, we
establish the convexity of unit norm balls, we recall the definition of norms. A function
∥ · ∥ : Rn → R is called a norm on Rn if (i) ∥x∥ ≥ 0 for all x ∈ Rn, and ∥x∥ = 0 if and
only if x = 0, (ii) ∥λx∥ = |λ|∥x∥ for all x ∈ Rn and λ ∈ Rn, and (iii) ∥x+y∥ ≤ ∥x∥+∥y∥
for all x, y ∈ Rn. The latter property is referred to as triangle inequality. We provide
three examples of norms on Rn: (i) the one-/1-norm ∥x∥1 :=

∑n
i=1 |xi|, (ii) the Euclidean

norm ∥x∥2 :=
√∑n

i=1 x
2
i , and (iii) the uniform norm ∥x∥∞ := max1≤i≤n |xi|. Figure 1.7

depicts graphs of their unit norm balls.

x1

x2

x1

x2

x1

x2

Figure 1.7: Unit norm balls of 1-norm (left), Euclidean norm, and uniform norm (right).

For a norm ∥ · ∥ on Rn, a scalar r ≥ 0 and a vector a ∈ Rn, we show that the norm
ball {x ∈ Rn : ∥x − a∥ ≤ r} with center a and radius r is convex. Let x, y ∈ Rn with
∥x− a∥ ≤ r and ∥y − a∥ ≤ r and let λ ∈ [0, 1]. We compute

∥λx+ (1− λ)y − a∥ = ∥λ(x− a) + (1− λ)(y − a)∥
≤ ∥λ(x− a)∥+ ∥(1− λ)(y − a)∥
= λ∥x− a∥+ (1− λ)∥y − a∥
≤ λr + (1− λ)r.

Hence the set {x ∈ Rn : ∥x − a∥ ≤ r} is convex. Using similar arguments, we can also
show that the set {x ∈ Rn : ∥x− a∥ < r} is convex.

Ellipsoids

A set X is called an ellipsoid if it can be represented by

X = {x ∈ Rn : (x− a)TQ(x− a) ≤ r2},

where Q ∈ Rn×n is symmetric positive definite, a ∈ Rn is a vector (called the ellipsoid’s
center), and a scalar r > 0 (called the ellipsoid’s radius). Figure 1.8 depicts an ellipsoid.
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1 Convex Sets

x1

x2

x3

Figure 1.8: An ellipsoid in R3.

We recall some terminology and facts from linear algebra. A matrix A ∈ Rn×n is
called a square matrix. A matrix A ∈ Rn×n is positive definite if dTAd > 0 for all
d ∈ Rn \ {0}. Finally, A ∈ Rn×n is referred to as symmetric if A = AT , where AT is the
transpose of A. A symmetric positive definite matrix A ∈ Rn×n has a unique “square
root” A1/2 ∈ Rn×n with A = A1/2A1/2 and A1/2 is symmetric positive definite.

Let us demonstrate that ellipsoids are convex. Let X be the ellipsoid introduced
above. The matrix Q is positive definite and symmetric and hence as a symmetric
positive definite square root Q1/2 with Q = Q1/2Q1/2. The function ∥x∥Q = ∥Q1/2x∥2
defines a norm on Rn, as Q1/2 is symmetric positive definite. We obtain

{x ∈ Rn : (x− a)TQ(x− a) ≤ r2} = {x ∈ Rn : ∥x− a∥2Q ≤ r2}
= {x ∈ Rn : ∥x− a∥Q ≤ r}.

The latter set is a norm ball with center a and radius r and as such convex.

ε-Neighborhoods of Convex Sets

If M ⊂ Rn is a nonempty convex set, ∥ · ∥ is a norm on Rn, and ε ∈ [0,∞), then the
ε-neighborhood of M ,

X = {x ∈ Rn : inf
y∈M

∥x− y∥ ≤ ε},

is convex. For x ∈ Rn, we define the distance from x toM by dist∥·∥(x,M) := infy∈M ∥x−
y∥.
To show this convexity statement, we observe at x ∈ X if and only if for each ε′ > ε,

there exists y ∈M such that ∥x− y∥ ≤ ε′. (This fact is a consequence of the definition
of the infimum and ε < ∞.) Now, let x, y ∈ X and let λ ∈ [0, 1]. We fix ε′ > ε. The
above statement implies that there exist u, v ∈ M with ∥x− u∥ ≤ ε′ and ∥y − v∥ ≤ ε′.
Defining w = λu+ (1− λ)v, we find that w ∈M

∥λx+ (1− λ)y − w∥ = ∥λ(x− u) + (1− λ)(y − v)∥
≤ λ∥x− u∥+ (1− λ)∥y − v∥ ≤ ε′.

Putting together the pieces, we find that X is a convex set.

10



1 Convex Sets

1.2 Convex Combinations and Convex Hulls

Let x1, . . . , xm ∈ Rn be vectors. If m ∈ N,
∑m

i=1 λi = 1 and λi ≥ 0, then the vector∑m
i=1 λix

i is called a convex combination of the points x1, . . . , xm. In the definition of
convex sets, we have encountered convex combinations with m = 2. Figure 1.9 depicts
a convex combination of three points in R3.

(0, 0) (4, 0)

(4, 4)(0, 4)

x = (1, 1)

Figure 1.9: x = (1, 1) is a convex combination of (0, 0), (4, 0), and (0, 4).

Using the notion of convex combinations, we obtain an equivalent characterization of
convexity of a set.

Lemma 1.3. A set X ⊂ Rn is convex if and only if each convex combination of vectors
from X is contained in X.

Proof. To establish this equivalent characterization, we demonstrate both implications.
Let X be convex. Let us prove that every m-term convex combination of vectors from
X is contained in X using induction. If m = 1 and m = 2, then the statement holds
true. Suppose that the statement is true for m. Let x1, . . . , xm+1 ∈ X and λi ≥ 0 with∑m+1

i=1 λi = 1. If λm+1 = 1, then
∑m+1

i=1 λix
i = xm+1 ∈ X. If λm+1 < 1, then

m+1∑
i=1

λix
i = (1− λm+1)

( m∑
i=1

λi
1− λm+1

xi
)

︸ ︷︷ ︸
∈X

+λm+1xm+1.

Since X is convex, we obtain
∑m+1

i=1 λix
i ∈ X.

To establish the reverse direction, we choose m = 2 in the definition of convex combi-
nations.

The intersection ∩α∈AXα of an arbitrary family of convex set (Xα)α∈A is a convex set.
Here, A is some set. Let X ⊂ Rn be a set. The intersection of all convex sets containing
X is called convex hull of X and is denoted by Conv(X). In other words, the convex
hull of a set X is the smallest convex set containing X. Figure 1.10 depicts convex hull
of points in R2.

11



1 Convex Sets

Figure 1.10: Convex hull of points.

The convex hull has an explicit representation in terms of convex combinations of
elements of X. We show that the convex hull Conv(X) of a set X ⊂ Rn is the set of all
convex combinations of points from X.

Proposition 1.4. If X ⊂ Rn is a set, then

Conv(X) =
{ m∑

i=1

λix
i : m ∈ N, xi ∈ X, λi ≥ 0,

m∑
i=1

λi = 1
}
,

Proof. Let us define the set X̂ := {
∑m

i=1 λix
i : m ∈ N, xi ∈ X, λi ≥ 0,

∑m
i=1 λi = 1 }.

Since X ⊂ Conv(X) and Conv(X) is convex, Lemma 1.3 ensures that each convex
combination of points from X is contained in Conv(X). Hence X̂ ⊂ Conv(X).

Let x, y ∈ X̂. Fix ν ∈ [0, 1]. We show that νx + (1 − ν)y ∈ X̂. Since x, y ∈ X̂,
x =

∑m
i=1 λix

i and y =
∑p

j=1 µjy
j for some xi ∈ X, yj ∈ X, λi ≥ 0, µj ≥ 0 and∑m

i=1 λi = 1 and
∑p

j=1 µj = 1. Moreover,

ν

m∑
i=1

λi + (1− ν)

p∑
j=1

µj = ν + (1− ν) = 1,

νλi ≥ 0 and (1− ν)µj ≥ 0. We obtain

νx+ (1− ν)y =

m∑
i=1

νλix
i +

p∑
j=1

(1− ν)µjy
j ∈ X̂.

Hence X̂ is convex. Combined with X ⊂ X̂ and the fact that Conv(X) is the smallest
convex set containing X, we have Conv(X) ⊂ X̂.

Simplices

Let x0, . . . , xm be a collection of m + 1 affinely independent vectors in Rn. An m-
dimensional simplex ∆ with vertices x0, . . . , xm is the convex hull of the affinely inde-
pendent points x0, . . . , xm in Rn, that is,

∆ = ∆(x0, . . . , xm) := Conv({x0, . . . , xm}).

12



1 Convex Sets

Let e1, . . . , en be the standard/canonical basis vectors in Rn. For 1 ≤ i ≤ n, the ith
entry of ei is one and all others are zero. The corresponding (n−1)-dimensional simplex
is the standard simplex, the convex hull of e1, . . . , en. We have

Conv({e1, . . . , en}) =
{
x ∈ Rn : xi ≥ 0,

n∑
i=1

xi = 1

}
.

Let e0 be the zero vector in Rn. We obtain the n-dimensional standard simplex

∆n := Conv({e0, . . . , en}) =
{
x ∈ Rn : xi ≥ 0,

n∑
i=1

xi ≤ 1

}
. (1.1)

Figure 1.11: m-dimensional simplices: point m = 0 (left), and line segment m = 1
(right).

Figure 1.12: m-dimensional simplices: triangle m = 2 (left), and tetrahedron m = 3
(right).

Cones

A subset K of Rn is conic if K is nonempty and if tx ∈ K for each x ∈ K and t ≥ 0. A
convex conic set is called a cone. Figure 1.13 provides an illustration.

0 0

0

Figure 1.13: Conic set (left), cone (middle), and conic set (right). The dot is the origin
0.

13



1 Convex Sets

Example 1.5. 1. The nonnegative orthant

Rn+ := {x ∈ Rn : x ≥ 0} = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}

is a cone.
2. The Lorentz cone

Ln :=
{
x ∈ Rn : xn ≥

√
x21 + · · ·+ x2n−1

}
=

{
(y, t) ∈ Rn−1 × R : t ≥ ∥y∥2

}
.

is a cone. Figure 1.14 depicts a graph of a Lorentz cone.

x1

x2

x3

Figure 1.14: Graph of the boundary of the Lorentz cone L3.

3. The set of symmetric positive semidefinite matrices, called the semidefinite cone
and denoted by Sn+, is a cone. We recall that a square matrix A ∈ Rn×n is positive
semidefinite if dTAd ≥ 0 for all d ∈ Rn.

4. The solution set {x ∈ Rn : aTαx ≤ 0, α ∈ A} of an arbitrary (finite or infinite)
homogeneous system of nonstrict linear inequalities is a cone.

Cones can be characterized using the following fact.

Proposition 1.6. A nonempty subset K ⊂ Rn is a cone if and only if
1. K is conic, that is, tx ∈ K for each x ∈ K and t ≥ 0, and
2. K is closed with respect to addition, that is, x+ y ∈ K for each x, y ∈ K.

Proof. LetK be a cone and let x, y ∈ K. SinceK is convex, we have (1/2)x+(1/2)y ∈ K.
Choosing t = 2, we find that x+ y ∈ K.
Now let K be conic and closed with respect to addition. We have to show that K is

convex. Let x, y ∈ K and let λ ∈ [0, 1]. We have λx ∈ K and (1 − λ)y ∈ K, as K is
conic. Since K is closed with respect to additions, we have λx+ (1− λ)y ∈ K.

Cones form an extremely important class of convex sets with properties related to
those of general convex sets. For example,

14



1 Convex Sets

• The intersection of an arbitrary familiy of cones is a cone. As a result, for every
nonempty set X ∈ Rn, the intersection of all cones containing X is a cone. This
cone is the smallest cone containing X and is denoted by Cone(X) and called conic
hull of X ∈ Rn.

• A nonempty set X ⊂ Rn is a cone if and only if it equals the set of conic com-
binations of elements from X. A conic combination is a linear combination with
nonnegative weights.

• The conic hull of a nonempty set X ⊂ Rn is the set of all conic combinations of
element of X.

1.3 “Calculus” of Convex Sets

We provide a number of convexity-preserving operations.

Proposition 1.7. The following operations preserve convexity of sets:
1. Taking intersections of convex sets: If Xα ⊂ Rn, α ∈ A, are convex, then ∩α∈AXα

is convex.
2. Taking direct products of convex sets: If Xℓ ⊂ Rnℓ for ℓ = 1, . . . , L are convex,

then their direct product

X1 × · · · ×XL := {(x1, . . . , xL) : xℓ ∈ Xℓ, ℓ = 1, . . . , L}

is convex.
3. Computing weighted sums of convex sets: If Xℓ ⊂ Rn for ℓ = 1, . . . , L are

nonempty and convex, and λℓ ∈ R, then

λ1X1 + · · ·+ λLXL := {λ1x1 + · · ·+ λLxL : xℓ ∈ Xℓ, ℓ = 1, . . . , L}

is convex.
4. Taking the image of an affine mapping: Let X ⊂ Rn be convex, let A ∈ Rm×n, and

let b ∈ Rm. Let us define the mapping A by A(x) := Ax+ b. Then the image of X
under the mapping A,

A(X) := {y = Ax+ b : x ∈ X},

is convex.
5. Taking the inverse image under affine mapping: Let X ⊂ Rn be convex, let A ∈

Rn×m, and let b ∈ Rn. Let us define the mapping A by A(y) = Ay + b. Then the
inverse image of X under the mapping A,

A−1(X) := {y ∈ Rm : Ay + b ∈ X},

is convex.

15



1 Convex Sets

1.4 Closures and Interiors of Convex Sets

A set X ⊂ Rn is closed if for all sequences (xk) ⊂ X with xk → x as k → ∞, we have
x ∈ X.

Example 1.8. 1. Unit norm balls, X = {x ∈ Rn : ∥x∥ ≤ 1}, are closed. To establish
this assertion, let (xk) ⊂ X be a sequence converging to x as k → ∞. We have to
show that x ∈ X. Using the triangle inequality, we can show that ∥xk∥ → ∥x∥ as
k → ∞. Combined with ∥xk∥ ≤ 1 for all k ∈ N, we obtain ∥x∥ ≤ 1. Hence x ∈ X.

2. If f : X → R is a continuous function on a nonempty, closed set X ⊂ Rn, and
x0 ∈ X, then the level set

{x ∈ X : f(x) ≤ f(x0)}

is closed. Let us call this level set S. To show that S is closed, let (xk) be a
sequence contained in S with xk → x as k → ∞. Our task is to show that x ∈ X
and f(x) ≤ f(x0). Since X is closed, we have x ∈ X. We have f(xk) ≤ f(x0) for
all k ∈ N. Since f is continuous and xk → x as k → ∞, we find that f(x0) ≥
f(xk) → f(x) as k → ∞. Hence f(x) ≤ f(x0), yielding x ∈ S.

3. The set X = {x ∈ Rn : aTαx ≤ bα, α ∈ A} is closed. This is the solution set to an
arbitrary system of nonstrict linear inequalities. We can demonstrate its closedness
using Lemma 1.9.

A set X ⊂ Rn is called bounded if there exists a number r ∈ (0,∞) with ∥x∥2 ≤ r for
all x ∈ X. In other words, a set is bounded if and only if it is contained in a ball (about
the origin) with finite radius. A set X ⊂ Rn is compact if and only if it is bounded and
closed.

Lemma 1.9. 1. The intersection of an arbitrary family of closed sets is closed.
2. The union of a finite family of closed sets are closed.

We can establish the fact that X = {x ∈ Rn : aTαx ≤ bα, α ∈ A} is closed using
Lemma 1.9, becauseX =

⋂
α∈A{x ∈ Rn : aTαx ≤ bα} and each of the sets {x ∈ Rn : aTαx ≤

bα} is closed.
A set X ⊂ Rn is open if for each x ∈ X, there exists r > 0 such that

{y ∈ Rn : ∥y − x∥2 < r} ⊂ X.

In other words, a set X ⊂ Rn is open if for each point from X there exists a norm ball
contained with positive radius in X. For example, the set {x ∈ Rn : ∥x∥2 < 1} is open.
A set X ⊂ Rn is open if and only if its complement Rn \X is closed.

Lemma 1.10. A set X ⊂ Rn is closed if and only if its complement Rn \X is open.

Using this lemma and Lemma 1.9, we obtain the following fact.

Lemma 1.11. 1. The union of an arbitrary family of open sets is open.
2. The intersection of a finite family of open sets are open.
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The closure cl(X) of a set X ⊂ Rn is defined by

cl(X) := {x ∈ Rn : (xk) ⊂ X, xk → x as k → ∞}.

In other words, the closure of a set is the set of limit points of converging sequences of
points in X. The closure of a set X is the smallest closed set containing X.

Example 1.12. 1. The closure of {x ∈ Rn : ∥x∥2 < 1} is {x ∈ Rn : ∥x∥2 ≤ 1}.
2. If {x ∈ Rn : aTαx < bα, α ∈ A} is nonempty, then its closure is

{x ∈ Rn : aTαx ≤ bα, α ∈ A}.

Let X ⊂ Rn be a set. A point x ∈ X is an interior point of X if there exists r > 0
with

{y ∈ Rn : ∥y − x∥2 < r} ⊂ X.

The set of all interior points of X is called interior of X and denoted by int(X). The
interior of a set X ⊂ Rn is the largest open set contained in X. The interior of {x ∈
Rn : ∥x∥2 ≤ 1} is {x ∈ Rn : ∥x∥2 < 1}. The interior of the rational numbers is ∅.

Example 1.13. Let us consider the n-dimensional standard simplex defined in (1.1).
The point x = (1/(n+1), . . . , 1/(n+1)) ∈ Rn is an interior point of the standard simplex
defined in (1.1).

The boundary ∂X of a set X ⊂ Rn is ∂X := cl(X) \ int(X). For example, the
boundary of the sets {x ∈ Rn : ∥x∥2 < 1} and {x ∈ Rn : ∥x∥2 ≤ 1} is the sphere
{x ∈ Rn : ∥x∥2 = 1}. For a set X ⊂ Rn, we have

int(X) ⊂ X ⊂ cl(X).

Let us discuss some properties of closures and interiors of convex sets.

Proposition 1.14. 1. If X ⊂ Rn is convex, then its interior and closure are convex.
2. If X ⊂ Rn is convex, x ∈ int(X), and y ∈ cl(X), then

λx+ (1− λ)y ∈ int(X) for all λ ∈ (0, 1].

3. If X ⊂ Rn is convex and its interior is nonempty, then

cl(X) = cl(int(X)). (1.2)

Roughly speaking (1.2) says that each point from the closure of X can be “approx-
imated” with points from the interior of X. The identity in (1.2) says that int(X) is
dense in cl(X), provided that X is convex and has an interior point. If X ⊂ Rn is
convex, closed, and its interior is nonempty, then (1.2) ensures

X = cl(int(X)).

The identity (1.2) does not hold if X as empty interior and X is nonempty. For example,
if X = {x} with x ∈ Rn, then int(X) = ∅. We obtain {x} = X = cl(X) ̸= cl(∅) = ∅.
Let us establish Proposition 1.14.
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y1
y2
ykx

y

λx+ (1− λ)y

ball with
radius r

ball with
radius λr/2

Figure 1.15: Rectangle set X, boundary point y, and interior point x. The ball about x

is contained in the rectangle. As yk approaches y, the ball about the convex
combination with radius λr/2 is eventually contained in the gray area.

Proof of Proposition 1.14. 1. Let X ⊂ Rn be convex. We show that its interior is
convex. For z ∈ Rn and r > 0, we define the norm ball with radius r and center z by
Br(z) := {x ∈ Rn : ∥x− z∥ < r}. Let x, y ∈ int(X) and let λ ∈ [0, 1]. Then there exists
r > 0 such that the sets Br(x) and Br(y) are contained in X. Since X is convex, we
have λX + (1− λ)X ⊂ X. Here, we use the notion of weighted sums of sets defined in
Proposition 1.7. Hence λBr(x) + (1 − λ)Br(y) ⊂ X. The set λBr(x) + (1 − λ)Br(y) is
equal to Br(λx+ (1− λ)y). Hence λx+ (1− λ)y ∈ int(X).

Next, we show that the closure of X is convex. Let x, y ∈ cl(X) and let λ ∈ [0, 1].
Since x, y ∈ cl(X), there exist sequences (xk), (yk) ⊂ X with xk → x and yk → y as
k → ∞. The convexity of X ensures λxk + (1− λ)yk ∈ X for all k ∈ N. Combined with

λxk + (1− λ)yk → λx+ (1− λ)y as k → ∞,

we find that λx+ (1− λ)y ∈ cl(X).
2. Our proof approach is illustrated in Figure 1.15. Since x ∈ int(X), there exists

r > 0 such that Br(x) ⊂ X. Since y ∈ cl(X), there exists a sequence (yk) ⊂ X with
yk → y as k → ∞. Fix k ∈ N. We have λBr(x) + (1 − λ)yk ⊂ X, as Br(x) and X
are convex. The set λBr(x) + (1 − λ)yk is the norm ball about λx + (1 − λ)yk with
radius λr. Hence λx + (1 − λ)yk ∈ int(X). For all sufficiently large k ∈ N, we have
λBr/2(x) + (1− λ)y ⊂ λBr(x) + (1− λ)yk.1 As the latter set is contained in the interior
of X, so is λBr/2(x) + (1− λ)y. Hence λx+ (1− λ)y ∈ int(X).

3. We have int(X) ⊂ X. Hence cl(int(X)) ⊂ cl(X). For the converse inclusion, we
use the second part of the proposition. Let x ∈ cl(X). Then there exists a sequence
(xk) ⊂ X with xk → x as k → ∞. Since the interior of X is nonempty, we can find
y ∈ int(X). We observe that (1/k)y + (1− 1/k)xk converges to x as k → ∞. Using the
second part of the proposition, we find that (1/k)y+(1− 1/k)xk ∈ int(X) for all k ∈ N.
Therefore, x is a limit point of a sequence of interior points.

1Let is verify with assertion. For all sufficiently large k ∈ N, we have ∥y − yk∥2 ≤ r/2. Let v ∈
λBr/2(x) + (1− λ)y. Hence ∥v− (1− λ)y− x∥2 ≤ λr/2, and ∥v− (1− λ)yk − x∥2 ≤ ∥v− (1− λ)y−
x∥2 + (1− λ)∥y − yk∥2 ≤ λr/2 + (1− λ)r/2 ≤ r/2.
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If X ⊂ Rn is convex and its interior is nonempty, then

cl(X) = cl(int(X)). (1.3)

If int(X) is empty, this identity is generally wrong and as a result we may not approxi-
mate points in cl(X) by those in int(X). However, with a generalized notion of interior,
we obtain an identity related to that in (1.3).

Definition 1.15. Let X ⊂ Rn be a set. A point x ∈ X is said to be a point in the
relative interior of X if there exists r > 0 with

{y ∈ Rn : ∥y − x∥2 < r} ∩Aff(X) ⊂ X.

The set of all such points is called the relative interior and is denoted by rint(X). The
relative boundary of X is the set cl(X) \ rint(X).

The relative interior of a singleton is the set itself. If n > 1, then the interior of a
line segment between the points x ∈ Rn and y ∈ Rn is the empty set. In contrast, the
relative interior of the line segment between x and y is the line segment without the
points x and y. Figure 1.16 provides a two-dimensional illustration.

x1

x2

x X

Figure 1.16: The set X = {x ∈ R2 : 0 ≤ x1 ≤ 2, x2 = 0}. The point x = (1, 0) is in
rint(X), but int(X) = ∅.

Figure 1.17 provides a three-dimensional illustration.
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x1

x3

x3

x

Figure 1.17: The dark gray area visualizes the convex set X. The light gray area visu-
alizes the affine hull Aff(X) of the set X. The point x is in rint(X), but
int(X) = ∅.

Geometrically speaking, the relative interior rint(X) is the interior we obtain when
viewing X as a subset of its affine hull Aff(X). The affine hull of a set is geometrically
speaking nothing but Rm, where m is the affine dimension of Aff(X). Let us provide
details for the latter assertion. For a nonempty set X ⊂ Rn, we have X ⊂ Aff(X) and
Aff(X) = {x ∈ Rn : ∃z ∈ Rm withx = Bz + d}, where d ∈ Rn and B ∈ Rn×m, and m is
the affine dimension of Aff(X). So we have m degrees of freedom to generate points in
Aff(X). Let us consider the set X̂ := {z ∈ Rm : Bz + d ∈ X}. If x̄ ∈ rint(X), then x̄ is
an interior point of X̂. This fact is sometimes used in proofs of theorems.
For a set X ⊂ Rn, we have

rint(X) ⊂ X ⊂ cl(X) ⊂ Aff(X).

If X ⊂ Rn is a set and Aff(X) = Rn, then the relative interior of X equals the interior
of X. In particular if the interior of X is nonempty, then we have Aff(X) = Rn. Indeed,
if the interior of X is nonempty, then it contains a ball B with positive radius and we
have Rn = Aff(B) ⊂ Aff(X).
The relative interior of a nonempty convex set is nonempty as we show next.

Theorem 1.16. 1. If X ⊂ Rn is a nonempty convex set, then its relative interior is
nonempty.

2. If X ⊂ Rn is convex, then rint(X) is convex.

Proof. We have rint(X) = a + rint(X − a) for each a ∈ Rn. If a ∈ X, then we have
0 ∈ X − a. Therefore, if X is nonempty, we can assume 0 ∈ X. Otherwise, we shift X
by some vector contained in X.
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1. We use the above observation and assume 0 ∈ X. Then we have Aff(X) = Lin(X).
If X = {0}, then we have X = Lin(X) = {0}. Hence rint(X) = {0}.
Now, let X ̸= {0}. Since Lin(X) is a linear subspace, it has a basis x1, . . . , xm ∈ X

with m being the linear dimension of Lin(X). We have m ≥ 1, as X ̸= {0}. We consider
the mapping T : Rm → Lin(X) defined by Tλ =

∑m
i=1 λix

i. This mapping takes weights
λ ∈ Rm and outputs a linear combination of our basis vectors x1, . . . , xm. The mapping
T is linear and continuous, and its inverse mapping T−1 is linear and continuous. If
U ⊂ Rm is an open set, then the continuity of T ensures that T (U) = Lin(X) ∩ V for
some open set V ⊂ Rn. Moreover, if V ⊂ Rn is open, then the continuity of T ensures
that T−1(V ) = Rm ∩ U for some open set U ∈ Rm. We obtain

rint(X) = T (int(T−1(X))). (1.4)

The point T−1(xi) equals the ith canonical unit vector ei in Rm and T−1(0) = 0. Propo-
sition 1.7 and the convexity of X ensure that the inverse image T−1(X) is convex.
Therefore, the m-dimensional standard simplex (see (1.1))

∆m = Conv({0, e1, . . . , em})

is contained in T−1(X). Example 1.13 tells us that ∆m has an interior point ȳ. Hence
ȳ ∈ int(S) ⊂ int(T−1(X)) and we obtain T (ȳ) ∈ T (int(T−1(X))). Combined with (1.4),
we find that rint(X) is nonempty.

2. If X is empty, then rint(X) is empty and hence convex. Now let X be nonempty.
We use the construction performed above and assume 0 ∈ X. Proposition 1.7 and
the convexity of X ensure that the inverse image T−1(X) is convex. Combined with
Proposition 1.14, we find that int(T−1(X)) is convex. Applying Proposition 1.7 once
more, we find that T (int(T−1(X))) is convex. Combined with the identity in (1.4), we
obtain the convexity of the relative interior of a convex set.

Using Theorem 1.16, we can extend the results in Proposition 1.14 to statements about
the relative interior rather than the interior.

Proposition 1.17. Let X ⊂ Rn be a nonempty convex set. Then

cl(X) = cl(rint(X)). (1.5)

Moreover, if x ∈ rint(X), and y ∈ cl(X), then

λx+ (1− λ)y ∈ rint(X) for all λ ∈ (0, 1]. (1.6)

Proof. Let us first establish (1.6). We use ideas similar to those used in the proof of
Proposition 1.14. Let x ∈ rint(X). We have Aff(X) = a+L for some vector a ∈ Rn and
a linear subspace L of Rn. We have

X ⊂ Aff(X) = x+ L.
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Let B be the closed unit ball in L, that is,

B := {h ∈ L : ∥h∥2 ≤ 1}.

Since x ∈ rint(X), there exists a positive radius r > 0 with

x+ rB ⊂ X. (1.7)

Now let λ ∈ (0, 1] and let z = λx + (1 − λ)y with y ∈ cl(X). Since y ∈ cl(X), there
exists a sequence (yk) ⊂ X with yk → y as k → ∞. Defining zk = λx + (1 − λ)yk,
we have zk → z as k → ∞. Using (1.7) and the convexity of X, we find that the sets
Zk = {λx′ + (1 − λ)yk : x′ ∈ X + rB} are contained in X. Note that the set Zk is the
shifted ball zk + λrB. For every r′ < r and all k ∈ N such that zk is sufficiently close to
z, the ball zk + λrB contains the ball z+ r′λB. Therefore, a neighborhood in Aff(X) of
z belongs to M . Hence z ∈ rint(X), that is, (1.6) holds true.
Let us now establish (1.5). We use ideas similar to those in the proof of Proposi-

tion 1.14. We have rint(X) ⊂ X. Hence cl(rint(X)) ⊂ cl(X). For the converse inclusion,
we use (1.6). Let x ∈ cl(X). Then there exists a sequence (xk) ⊂ X with xk → x as
k → ∞. Since the relative interior of X is nonempty according to Theorem 1.16, we can
find y ∈ rint(X). We observe that (1/k)y+(1−1/k)xk converges to x as k → ∞. Using
(1.6), we find that (1/k)y + (1− 1/k)xk ∈ rint(X) for all k ∈ N. Therefore, x is a limit
point of a sequence of points from the relative interior.

1.5 Caratheodory’s theorem

We recall a few notions. A nonempty affine subspace M of Rn can be represented by
M = a + L, where a ∈ Rn is a vector and L ⊂ Rn is a linear subspace. The linear
subspace L has a basis. The number of elements in the basis is called linear dimension
of L. The affine dimension of M = a + L is the linear dimension of L. The affine
dimension of a nonempty set X ⊂ Rn is the affine dimension of its affine hull Aff(X).

Let us illustrate these notions an specific examples.

Example 1.18. • The affine dimension of {0} is zero.
• The affine dimension of Rn is n.
• The affine dimension of the nonempty affine subspace {x ∈ Rn : Ax = b} is n −
Rank(A). Here, Rank(A) is the rank of the matrix A.

With the notion of dimension of a set, we are ready to state Caratheodory’s theorem.

Theorem 1.19 (Caratheodory’s theorem). Let X ⊂ Rn be nonempty and let m be its
affine dimension. Then each point x ∈ Conv(X) is a convex combination of at most
m+ 1 points from X.

Proof. Let x ∈ Conv(X). Then we have x =
∑p

i=1 λix
i, for some p ∈ N, xi ∈ X

and positive weights λi > 0 with
∑p

i=1 λi = 1. (Per se we only know that x is a convex
combination of elements of X. If some of the weights in the convex combination are zero,
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we remove the corresponding points from the convex combination. Therefore, we can
assume λi > 0.) If the vectors λi(x

i, 1) ∈ Rn+1, i = 1, . . . , p, are linearly independent,
then we must have p ≤ m+1. Let us provide further details for this claim. The maximum
number affinely independent vectors in Aff(X) is m + 1 and we have xi ∈ Aff(X) for
i = 1, . . . , p. Moreover, λi(x

i, 1) ∈ Rn+1, i = 1, . . . , p, are linearly independent if and
only if (xi, 1) ∈ Rn+1, i = 1, . . . , p, are linearly independent if and only if the vectors
xi ∈ Rn, i = 1, . . . , p, are affinely independent if and only if the p−1 vectors xi−x1 ∈ Rn,
i = 2, . . . , p, are linearly independent. Therefore, p− 1 ≤ m.
Now, let the vectors yi := λi(x

i, 1) ∈ Rn+1, i = 1, . . . , p, be linearly dependent. Hence,
we can find µ ∈ Rp \ {0} with

∑p
i=1 µiy

i = 0. We obtain

p∑
i=1

µiλi = 0 and

p∑
i=1

µiλix
i = 0.

Since λi > 0 for i = 1, . . . , p and µ ̸= 0, at least one component of µ must be negative.
We choose j ∈ N with µj = mini µi and define λ∗i = (1 − µi/µj)λi. We have µi/µj ≤ 1
and hence 1 ≥ λ∗i ≥ 0. Moreover, λ∗j = 0. We compute

∑
i ̸=j

λ∗i =

p∑
i=1

λ∗i =

p∑
i=1

λi − (1/µj)

p∑
i=1

µiλi = 1− 0,

∑
i ̸=j

λ∗ix
i =

p∑
i=1

λ∗ix
i =

p∑
i=1

λix
i − (1/µj)

p∑
i=1

µiλix
i = x− 0.

We have shown that x can be written as a convex combinations of p−1 vectors. Repeating
our computations until p ≤ m+ 1, we obtain the assertion.

Figure 1.18 provides an example showing that a convex combination with fewer ad-
dends than m+ 1 may not be possible.

x1

x2

x3

Figure 1.18: The blue point is the barycenter of the three triangle’s vertices. The affine
dimension of the affine hull of the triangle’s vertices is two.

Example 1.20 (Application of Caratheodory’s theorem). A supermarket sells 99 dif-
ferent herbal teas. Each of them is a certain blend of 26 herbs. In spite of such a variety
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of blends, a customer, John, is not satisfied with any of them. The only herbal tea he
likes is their mixture in the proportion

1: 2 : 3 : · · · : 98 : 99.

Once it occurred to John that in order to prepare his favorite tea, he does not need to
buy all 99 teas. What is the number of herbal teas John must buy in order to great his
favorite tee? The answer is just 26.
Let us represent a blend by a unit weight portion, say, 1 gram. Such a portion can

be identified with a 26-dimensional vector x = (x1, . . . , x26) with nonnegative entries
summing to 1. Each xi is the weight (in grams) of herb #i in the portion. We have

x ∈ R26
+ and

26∑
i=1

xi = 1.

Let x1, . . . , x99 be the 99 herbal teas, each of them is a 26-dimensional vector. To create
John’s favorite tea x̄, we mix the herbal teas. For each herbal tea xi, we take λi grams
of it and mix them together. We obtain

x̄ =
99∑
i=1

λix
i.

We find that
∑99

i=1 λi = 1. Hence John’s tea x̄ can be obtained by mixing the herbal
teas x1, . . . , x99 if and only if x̄ ∈ Conv({x1, . . . , x99}). Caratheodory’s theorem tells us
that John’s tea x̄ can be obtained by some mixture of at most m+ 1 of the herbal teas,
where m is the affine dimension of the affine span of x1, . . . , x99. The affine span of the
herbal teas belongs to the 25-dimensional affine plane{

x ∈ R26 :

26∑
i=1

xi = 1

}
Hence m ≤ 25.

We continue with the conic version of Caratheodory’s theorem.

Theorem 1.21 (Caratheodory’s theorem (conic version)). Let X ⊂ Rn be nonempty.
Then each point x ∈ Cone(X) is a conic combination of at most n points from X.

Proof. Let x ∈ Cone(X). Since x ∈ Cone(X), we have x =
∑m

i=1 λix
i for some λi > 0

and xi ∈ X. If m ≤ n, then the statement is true. Now let m ≥ n+1. Then the vectors
λ1x

1, . . . , λmx
m are linearly dependent, as the vectors x1, . . . , xm are linearly dependent

and λi > 0. Hence there exists µ ∈ Rm with µ ̸= 0 such that
∑m

i=1 λiµix
i = 0. Since

µ ̸= 0, at least one component of µ is nonzero. Suppose that µ has a negative entry.
(If this is not the case, then we can multiply

∑m
i=1 λiµix

i = 0 by minus one, to obtain
that at least on component of −µ is negative.) We choose j ∈ N with µj = mini µi and
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define λ∗i = (1− µi/µj)λi. We have µi/µj ≤ 1 and hence λ∗i ≥ 0 and λ∗j = 0. We obtain

x =
∑m

i=1 λix
i =

∑m
i=1 λix

i − (1/µj)
∑m

i=1 µiλix
i =

∑m
i=1 λi(1 − µi/µj)x

i =
∑

i ̸=j λ
∗
ix
i.

Hence, we have written x as a conic combination of m − 1 points. Repeating this
argument until m ≤ n, we obtain the assertion.

The example depicted in Figure 1.19 shows that a conic combination with fewer ad-
dends than n may not be possible.

x1

x2

x = (1, 1)

Figure 1.19: The set X = {(1, 0), (0, 1)} ⊂ R2 and its conic hull Cone(X) = R2
+. The

point x = (1, 1) is a conic combination of (1, 0) and (0, 1).

1.6 Radon’s theorem

We recall that two sets are called disjoint if their intersection is empty.

Theorem 1.22 (Radon’s theorem). Every collection of affinely dependent vectors in Rn
can be split into two nonempty, disjoint sets such that their convex hulls have at least
one point in common.

Proof. Let x1, . . . , xm be a collection of m affinely dependent points. Then there exist
weights λi ∈ R for i = 1, . . . ,m with λ ̸= 0,

m∑
i=1

λix
i = 0 and

m∑
i=1

λi = 0.

Let us define the index sets

I := {i ∈ {1, . . . ,m} : λi > 0} and J := {i ∈ {1, . . . ,m} : λi ≤ 0}.

The set J is the complement of I. Since λ ̸= 0 and the components of λ sum up to zero,
the sets I and J are nonempty. Our definition of the sets ensures that they are disjoint.
We obtain ∑

i∈I
λix

i = −
∑
j∈J

λjx
j =

∑
j∈J

(−λj)︸ ︷︷ ︸
≥0

xj
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and ∑
i∈I

λi = −
∑
j∈J

λj =
∑
j∈J

(−λj) > 0.

We define σ :=
∑

j∈J(−λj). We obtain

Conv({xi : i ∈ I}) ∋
∑
i∈I

(λi/σ)x
i =

∑
j∈J

(−λj/σ)xj ∈ Conv({xj : j ∈ J}).

The following consequence of Radon’s theorem (Theorem 1.22) is also known as
Radon’s theorem.

Corollary 1.23 (Radon’s theorem). Every collection of m vectors in Rn with m ≥ n+2
can be split into two nonempty, disjoint sets such that their convex hulls have at least
one point in common.

We establish Caratheodory’s theorem (Theorem 1.19) using Theorem 1.22. Let x ∈
Conv(X). Then x =

∑p
i=1 λix

i, for some p ∈ N, xi ∈ X and positive weights λi > 0
with

∑p
i=1 λi = 1. If p ≤ m+ 1, then the assertion is true. If p > m+ 1, then Radon’s

theorem ensures the existence of two nonempty, disjoint sets I, J ⊂ {1, . . . , p} and
µi > 0, i = 1, . . . , p,

∑
i∈I µi = 1,

∑
j∈J µj = 1, such that∑

i∈I
µix

i =
∑
j∈J

µjx
j ∈ Conv({xj : j ∈ J}) ∩ Conv({xi : i ∈ I}).

We define t := mini∈I (λi/µi). We have λi ≥ tµi for all i ∈ I, λk = tµk for some k ∈ I,
t > 0, and

x = x− t
∑
i∈I

µix
i + t

∑
j∈J

µjx
j =

∑
i∈I\{k}

(λi − tµi)x
i +

∑
j∈J

(λj + tµj)x
j

and ∑
i∈I

(λi − tµi) +
∑
j∈J

(λj + tµj) = 1.

Repeating this argument until p ≤ m+ 1, we obtain the assertion.

1.7 Helly’s Theorem

We establish Helly’s theorem using Radon’s theorem.

Theorem 1.24 (Helly’s theorem). Let K1, . . . ,Km be convex sets in Rn with m ≥ n+1.
Suppose that every n+1 sets from the family K1, . . . ,Km have a point in common. Then
all sets have a point in common.
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Proof. We establish the assertion using induction and Radon’s theorem. Base case: For
all m ≤ n + 1 there is nothing to show. Induction step: (m → m + 1) Suppose the
hypothesis is true for some m ≥ n+ 1. Then for all j ∈ {1, . . . ,m+ 1},

Lj :=
m+1⋂
i=1
i ̸=j

Ki ̸= ∅.

Hence for every j ∈ {1, . . . ,m + 1} there exists xj ∈ Lj . If xj = xj′ for j ̸= j′, then
xj ∈

⋂m+1
i=1 Ki.

Otherwise, the set {x1, . . . , xm+1} is affinely dependent owing to m+ 1 ≥ n+ 2, and
therefore Radon’s theorem ensures the existence of an index set I ⊂ {1, . . . ,m+ 1} and
x ∈ Rn such that x ∈ Conv(xi : i ∈ I) ∩ Conv(xi : i /∈ I). Using

xj ∈ Lj ⊂

{⋂
i/∈I Ki, j ∈ I,⋂
i∈I Ki, j /∈ I,

we obtain conv {xi : i ∈ I} ⊂
⋂
i/∈I Ki and conv {xi : i /∈ I} ⊂

⋂
i∈I Ki. Hence

x ∈
⋂
i∈I

Ki ∩
⋂
i/∈I

Ki =

m+1⋂
i=1

Ki

Example 1.25. We consider the Tschebyshev problem

min
x∈Rn

max
1≤i≤M

|aTi x− bi| (1.8)

where ai ∈ Rn and bi ∈ R with and M ≥ n + 1. Let v∗ be the optimal value of (1.8).
We show that there is an index set I ⊂ {1, . . . ,M} with at most n+1 indices such that
the optimal value of the relaxed problem

inf
x∈Rn

max
i∈I

|aTi x− bi| (1.9)

equals the optimal value v∗ of (1.8).
We consider the sets Xi = {x ∈ Rn : |aTi x − bi| < v∗}. Since v∗ is the optimal value

of (1.8), the sets X1, . . . , XM have no point in common. (If they would have a point
in common, then v∗ would not be the optimal value of (1.8).) Helly’s theorem ensures
that there exists an index set I ⊂ {1, . . . ,M} with at most n+1 elements such that Xi,
i ∈ I, have no point in common. In other words, there is no point x̄ ∈ Rn that satisfies
all inequalities |aTi x̄− bi| < v∗ for all i ∈ I. We obtain that the optimal value of (1.9) is
≥ v∗. Since I ⊂ {1, . . . ,M}, these optimal values must be equal.

Helly’s theorem can be refined.
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Theorem 1.26. Let X1, . . . , XM be a family of convex sets in Rn. Suppose that their
union X1 ∪X2 ∪ · · · ∪XM is contained in an affine subspace of affine dimension m. If
every m + 1 sets from the family X1, . . . , XM have a point in common, then the sets
X1, . . . , XM have a point in common.

Proof. The sets Xj can be viewed as subsets of Rm. Therefore, Helly’s theorem implies
the assertion.

We consider some applications of Helly’s theorem.

Example 1.27 (Polynomial approximation). We are given a function f : X → R
defined on a set X ⊂ R with 7,000,000 points. For each subset of X with 7 points, the
function f can be approximated with a polynomial of degree 5 with accuracy 0.001. To
approximate the function f on X, we want to use a spline of degree 5. A spline of degree
5 is a piecewise polynomial with pieces of degree 5. How many pieces should we take to
approximate f by a spline with accuracy 0.001 on X? The answer is one is sufficient.
For x ∈ X, let Ax be the set of coefficients of all polynomials of degree 5 which

approximate f(x) within accuracy 0.001, that is,

Ax =

{
p = (p0, . . . , p5) ∈ R6 :

∣∣∣∣f(x)− 5∑
i=0

pix
i

∣∣∣∣ ≤ 0.001

}
.

The set Ax is polyhedral and hence convex. By assumption, every 6 + 1 = 7 sets
from the family (Ax)x∈X have a point in common. Helly’s theorem implies that all sets
(Ax)x∈X have a point in common. Hence there exists on polynomial of degree 5 which
approximates f within accuracy 0.001 at every point in X.

Example 1.28. Our task is the design a factory described by the following linear pro-
gramming model:

Ax ≥ d d1, . . . , d1000,demands

Bx ≤ f f1 ≥ 0, . . . , f10 ≥ 0, amount of resources

Cx ≤ c, other constraints

(1.10)

The problem data A, B, C, c is given. Our task is to order resources fi ≥ 0, i = 1, . . . , 10,
in such a way that the factory will be capable of satisfying all demand scenarios d from
a given finite set D, that is, the system (1.10) should have a feasible point for every
d ∈ D. The ith resource costs aifi with ai > 0. It is known to us that in order to satisfy
a scenario d ∈ D, it suffices to invest $1 in the resources f1, . . . , f10. How large should
the investment in resources be in case that D contains

• ten scenarios?
• 2004 scenarios?

If D consists of 10 possible scenarios, then an investment of $10 is sufficient. If D
consists of 2004 possible scenarios, then an investment of $11 is sufficient. Let us establish
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this statement. For d ∈ D, let Fd be the set of all nonnegative f ∈ R10 with cost at
most $11 and result in a solvable system

Ax ≥ d, Bx ≤ f, Cx ≤ c (1.11)

with x as the unknown. The set Fd is convex as a result of the representation

Fd = {f ∈ R10
+ : ∃x solving (1.11)}

and Theorem 1.30, for example. Every 11 sets of this type have a point in common:
Given 11 scenarios d1, . . . d11 ∈ D, we can meet demand scenario di by investing $1 in
a properly selected vector of resources f i ∈ R10

+ . Therefore, we can meet the demand
of the 11 scenarios d1, . . . d11 by a single vector of resources f1 + · · · + f11 at the cost
of $11. Therefore, this vector belongs to every one of the sets Fd1 , . . . Fd11 . Since very
11 of the 2004 convex sets Fd ⊂ R10, d ∈ D, have a point in common, Helly’s theorem
ensures that all of these sets have a point in common.

Helly’s theorem has important applications in structural design, for example, with
interesting implications.

1.8 Polyhedral Representations

We recall that a set X in Rn is called polyhedral if it is the solution set to a finite system
of nonstrict linear inequalities, that is, X ⊂ Rn is polyhedral if it takes the form

X = {x ∈ Rn : Ax ≤ b} = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}.

We say that a set X ⊂ Rn is polyhedrally representable if it admits a representation
of the form

X = {x ∈ Rn : ∃w ∈ Rm with Px+Qw ≤ r}, (1.12)

where P ∈ Rs×n, Q ∈ Rs×m, and r ∈ Rs. A respresentation of a set X ⊂ Rn of the
form in (1.12) is called polyhedral representation of X, and the variables w in (1.12) are
called slack variables. The set (1.12) is the projection onto the space of x-variables of
the polyhedral set

X+ = {(x,w) ∈ Rn+p : Px+Qw ≤ r}.

Figure 1.20 depicts an illustration.
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Figure 1.20: A polyhedron (top) and its projection (bottom).

Example 1.29. 1. Every polyhedral set X = {x ∈ Rn : Ax ≤ b} is polyhedrally
representable. In (1.12), we can choose P = A and Q = 0.

2. The set X = {x ∈ Rn :
∑n

i=1 |xi| ≤ 1} is polyhedrally representable. We have

X =

{
x ∈ Rn : ∃w ∈ Rn with − wi ≤ xi ≤ wi, 1 ≤ i ≤ n,

n∑
i=1

ui ≤ 1

}
.

To establish this identity it is helpful to use the fact that −wi ≤ xi ≤ wi if and only if
|xi| ≤ wi.

3. The conic hull of the vectors a1, . . . , am ∈ Rn can be represented as a polyhedron,
because

Cone({a1, . . . , am}) =
{
x ∈ Rn : ∃λ ∈ Rm+ with x =

n∑
i=1

λiai

}

=

{
x ∈ Rn : ∃λ ∈ Rm with


−λ ≤ 0

x−
∑n

i=1 λiai ≤ 0

−x+
∑n

i=1 λiai ≤ 0

}

It turns out that every polyhedrally representable set is polyhedral; a surprising and
deep fact.

Theorem 1.30. Every polyhedrally representable set is polyhedral.

Proof. The proof is constructive and uses the Fourier–Motzkin elimination scheme. Let
us consider the set

X = {x ∈ Rn : ∃w ∈ R with Px+ wq ≤ r},
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where P ∈ Rs×n, q ∈ Rs, and r ∈ Rs. This set has only one slack variable.
Let us show that this sets can be represented as a polyhedral set. We define the index

sets I− := {i : qi < 0}, I0 := {i : qi = 0}, and I+ := {i : qi > 0}. Note that some of these
three index sets may be empty. Let us denote the ith row of P by pTi . We have

x ∈ X ⇔ ∃w ∈ R : Px− r ≤ −wq
⇔ ∃w ∈ R : pTi x− ri ≤ −wqi, i ∈ {1, . . . , s}

⇔ ∃w ∈ R :


pTi x− ri ≤ −wqi, i ∈ I−,

pTj x− rj ≤ −wqj , j ∈ I+,

pTk x− rk ≤ 0, k ∈ I0

⇔ ∃w ∈ R :


(ri − pTi x)/qi ≤ w, i ∈ I−,

(rj − pTj x)/qj ≥ w, j ∈ I+,

pTk x− rk ≤ 0, k ∈ I0

⇔

{
(ri − pTi x)/qi ≤ (rj − pTj x)/qj , i ∈ I−, j ∈ I+,

pTk x− rk ≤ 0, k ∈ I0,

Let us define ai = pi/qi for i ∈ I+ ∪ I− and bi = ri/qi for i ∈ I+ ∪ I−. We obtain

X = {x ∈ Rn : (aj − ai)
Tx ≤ bj − bi, i ∈ I−, j ∈ I+, pTk x ≤ rk, k ∈ I0}.

This set is polyhedral.
So far we have considered a set with only one slack variable. If X is as in (1.12), then

we only need to apply the above elimination scheme m times.

The fact that every polyhedrally representable set is polyhedral has many applications.
We provide here one. We consider the linear program (LP)

min
x∈Rn

cTx s.t. Ax ≤ b, (1.13)

where c ∈ Rn, A ∈ Rm×n is a matrix, and b ∈ Rm. Let us consider the set

X = {τ ∈ R : ∃x ∈ Rn with Ax ≤ b, cTx = τ}.

Converting cTx = τ into two linear inequalities, we obtain

X = {τ ∈ R : ∃x ∈ Rn with Ax ≤ b, cTx ≤ τ − cTx ≤ −τ}.

According to Theorem 1.30, this set is polyhedral. In particular, X can be represented
by a finite system of linear inequalities in the variable τ . By definition of the set X, it is
the set of values the objective function τ = cTx for feasible x ∈ Rn (those x that satisfy
Ax ≤ b). We find that if the LP (1.13) has a feasible point and its objective function
is bounded from below on the feasible set, then X has a smallest element. We deduce
the existence of a solution to the LP (1.13), provided that it has a feasible point and its
objective function is bounded from below on the feasible set.
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1.9 Separation Theorems

Separation theorems make statements about whether or not convex sets can be separated
by a hyperplane.

Definition 1.31. Let a ∈ Rn \ {0} and let b ∈ R. The set

H(a, b) := {x ∈ Rn : aTx = b}.

is called a hyperplane.

Hyperplanes are (n − 1)-dimensional affine subspaces in Rn. Figures 1.21 and 1.22
provides illustrations.

aTx = b

a
x0

x

Figure 1.21: A hyperplane.
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8

aTx = b
a

x1

x2

Figure 1.22: A hyperplane with a = (−1, 1).

For a ∈ Rn \ {0} and b ∈ R, we define the closed halfspaces

H−(a, b) := {x ∈ Rn : aTx ≤ b},
H+(a, b) := {x ∈ Rn : aTx ≥ b}.

If a ∈ Rn \ {0} and b ∈ R, then Rn = H−(a, b) ∪ H+(a, b). Figure 1.23 provides an
illustration.
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a

aTx ≤ b

aTx ≥ b

Figure 1.23: Halfspaces.

We formalize the concept of separation by hyperplanes.

Definition 1.32. Let T and S be two nonempty sets in Rn. Let a ∈ Rn \{0} and b ∈ R.
1. The hyperplane H(a, b) separates S and T if

S ⊂ H−(a, b), T ⊂ H+(a, b), and S ∪ T ̸⊂ H(a, b).

(The last condition says that at least one of the sets S and T is not contained in
H(a, b).)

2. We say that a linear form aTx with a ̸= 0 separates S and T if for some b ∈ R,
the hyperplane H(a, b) separates S and T .

3. The hyperplane H(a, b) separates S and T strongly if there exist b′ and b′′ with
b′ < b < b′′ such that

S ⊂ H−(a, b
′) and T ⊂ H+(a, b

′′).

4. We say that S and T can be separated strongly if there exists a hyperplane sepa-
rating S and T strongly.

Figure 1.24 provides an illustration.

S

T

Figure 1.24: The hyperplane 2x1 + 3x2 = 6 separates S and T strongly.

An important characterization of a separating linear form is given as follows. Let S
and T be nonempty convex sets in Rn and let a ∈ Rn \ {0}. Then the linear form aTx
separates S and T if and only if

sup
x∈S

aTx ≤ inf
y∈T

aT y and inf
x∈S

aTx < sup
y∈T

aT y. (1.14)
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Moreover, the linear form aTx strongly separates S and T if and only if

sup
x∈S

aTx < inf
y∈T

aT y. (1.15)

If S and T are nonempty, and a ∈ Rn \ {0} satisfies (1.14), then for each b ∈ R with

sup
x∈S

aTx ≤ b ≤ inf
y∈T

aT y, (1.16)

the hyperplane H(a, b) separates the sets S and T .

Example 1.33. 1. The linear form x1 on R2 separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0}.

2. The linear form x1 on R2 separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 + x2 ≥ 0, x2 ≤ 0}.

3. The linear form x1 on R2 does not separate the sets

S = {x ∈ R2 : x1 = 0, 1 ≤ x2 ≤ 2},
T = {x ∈ R2 : x1 = 0, −2 ≤ x2 ≤ −1}.

4. The linear form x1 on R2 separates the sets

S = {x ∈ R2 : x1 = 0, 0 ≤ x2 ≤ 2},
T = {x ∈ R2 : 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 1}.

1.9.1 Separation Theorem

Theorem 1.34 provides a separation theorem.

Theorem 1.34 (separating hyperplane theorem). Two nonempty convex sets in Rn can
be separated by a hyperplane if and only if their relative interiors do not intersect.

We prepare our proof of Theorem 1.34. The following lemma provides conditions
necessary and sufficient for a linear form over a convex set be constant. We will use this
lemma to show that if two nonempty convex sets can be separated by a hyperplane, then
their relative interiors have no point in common.

Lemma 1.35. Let X ⊂ Rn be a convex set, x̄ ∈ rint(X), and let a ∈ Rn. Then
aT x̄ = maxx∈X aTx if and only if the linear form aTx is constant on X.
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Proof. If the linear form aTx is constant on X, then any point x ∈ X is a maximizer of
aTx over X. We have aTx = aT x̄ for all x ∈ X.

Now, let x̄ ∈ rint(X) be a maximizer of aTx over X and let y ∈ X. We should prove
that aT x̄ = aT y. If y = x̄, then we have aT x̄ = aT y. Now let y ̸= x̄. The line segment
between y and x̄ is contained in X. Since x̄ ∈ rint(X), this line segment can be extended
a little bit through the point x̄ not leaving X. Hence there exists some point z ∈ X
x̄ = (1 − λ)y + λz for some λ ∈ [0, 1). Since x̄ ̸= y, we have λ ∈ (0, 1). Moreover,
aT z ≤ aT x̄. We obtain

aT x̄ = (1− λ)aT y + λaT z ≤ (1− λ)aT y + λaT x̄.

Hence (1− λ)aT x̄ ≤ (1− λ)aT y. Combined with aT x̄ ≤ aT y, we obtain aT x̄ = aT y.

We continue preparing our proof of Theorem 1.34. Our next step consists in showing
that a singleton and the convex hull of finitely many vectors can be strongly separated,
provided that the singleton is not contained in the convex hull.

Lemma 1.36. Let x1, . . . , xm be vectors in Rn and define S := Conv({x1, . . . , xm}). If
x ̸∈ S, then S and T := {x} can be separated strongly by a hyperplane.

Proof. The set S can be written as

S =

{
x ∈ Rn : ∃λ ∈ Rm with λ ≥ 0,

m∑
i=1

λi = 1, x =

m∑
i=1

λix
i

}
.

Hence Theorem 1.30 ensures that S is polyhedrally representable, that is, we can write

S = {x ∈ Rn : cTi x ≤ di, i = 1, . . . , p},

for some ci ∈ Rn, di ∈ R, and p ∈ N. Since x ̸∈ S, there exists an index i ∈ {1, . . . , p}
with cTi x > di. Moreover, we have supy∈S c

T
i y ≤ di. Combining our estimates, we have

sup
x∈S

cTi y < cTi x.

Combined with (1.15), we find that the linear form cTi x strongly separates S and T .

Remark 1.37. Let S be a nonempty convex set, such as that considered in Lemma 1.36.
If S and {0} can be separated, then we have for some nonzero vector a ∈ Rn,

sup
x∈S

aTx ≤ 0 and inf
x∈S

aTx < 0.

The set L := Lin(S) is a linear subspace of Rn. Since a ∈ Rn, we have the unique
decomposition a = aL + aL⊥ , where aL ∈ L, aL⊥ ∈ L⊥, and L⊥ = {y ∈ Rn : yTd =
0 for all d ∈ L}. Let us show that

sup
x∈S

aTLx ≤ 0 and inf
x∈S

aTLx < 0.

For each x ∈ S, we have x ∈ L = Lin(S) and hence aTx = aTLx + aT
L⊥x = aTLx. We

obtain supx∈S a
T
Lx ≤ 0 and infx∈S a

T
Lx < 0. Hence the linear form aTLx separates S and

{0}.
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Lemma 1.36 provides conditions sufficient to separate a singleton from the convex
hull of finitely many points. We would like to extend this separation statement to the
separation of a singleton from a convex set which is not necessarily the convex hull of
finitely many points. To establish such a separation statement, we cannot directly use
Lemma 1.36. However, we can approximate to some extend a nonempty convex set S
with the convex hull generated by finitely many points contained in the set S. This
approximation is sufficiently accurate if these finitely points in S are close to each point
in S.

Lemma 1.38. If S is a nonempty set in Rn, then there exists a sequence (xk) ⊂ S such
that each points x ∈ S is the limit point of a some subsequence of (xk).

Lemma 1.38 is a statement from real analysis. It says that any nonempty set in Rn is
separable. Using Lemmas 1.36 and 1.38, we can establish the separation of a singleton
and a nonempty convex set, provided that the singleton is not contained in the convex
set.

Lemma 1.39. Let S be a nonempty convex set with 0 ̸∈ S. Then S and {0} can be
separated.

Proof. In light of (1.14), we have to establish the existence of a vector d ∈ Rn \ {0} such
that

sup
x∈S

dTx ≤ 0 and inf
x∈S

dTx < 0.

Let (xk) ⊂ S be the sequence given by Lemma 1.38. Since S is convex and (xk) ⊂ S,
we have for all k ∈ N, Conv({x1, . . . , xk}) ⊂ S. Combined with 0 ̸∈ S, we have 0 ̸∈
Conv({x1, . . . , xk}) for all k ∈ N. For each k ∈ N, Lemma 1.36 and remark 1.37 ensure
the existence of a vector ak ∈ Rn \ {0} with ak ∈ Lin(S) with

0 > max
1≤j≤k

(ak)Txj .

Dividing by ∥ak∥2 and defining dk := ak/∥ak∥2, we obtain

0 > max
1≤j≤k

(dk)Txj .

The vectors dk have norm one and hence there exists a subsequence of (dkℓ) of (dk) such
that dk → d as ℓ → ∞ and we have ∥d∥2 = 1. Moreover, dk ∈ Lin(S) for all k ∈ N.
Since Lin(S) is closed, we have d ∈ Lin(S). Taking limits as ℓ → ∞, we obtain for all
j ∈ N,

0 ≥ dTxj .

Since each x ∈ S is the limit point of some subsequence of (xk), we obtain dTx ≤ 0 for
all x ∈ S. Hence supx∈S d

Tx ≤ 0.
In light of (1.14), it must yet be shown that infx∈S d

Tx < 0. Suppose that infx∈S d
Tx ≥

0. Combined with supx∈S d
Tx ≤ 0, we obtain dTx = 0 for all x ∈ S and hence dT y = 0

for all y ∈ Lin(S). Combined with d ∈ Lin(S), we obtain 0 = dTd = 1, a contradic-
tion.
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Now we separate two convex nonempty disjoint sets.

Lemma 1.40. If S and T are two nonempty convex disjoint sets, then they can be
separated by a hyperplane.

Proof. We apply Lemma 1.39 to the sets Ŝ := S − T and T̂ := {0}. Recall from
Proposition 1.7 that the set Ŝ := S − T consists of all points z = x − y with x ∈ S
and y ∈ T . Proposition 1.7 ensures that Ŝ is a convex set. Since S and T are disjoint,
Ŝ does not contain the zero vector. Hence Lemma 1.39 ensures that Ŝ and {0} can be
separated by a hyperplane. Hence there exists a nonzero vector a ∈ Rn with

sup
z∈Ŝ

aT z ≤ 0 and inf
z∈Ŝ

aT z < 0.

Each point z ∈ Ŝ can be written as z = x− y with x ∈ S and y ∈ T . We obtain

sup
x∈S,y∈T

aTx− aT y ≤ 0 and inf
x∈S,y∈T

aTx− aT y < 0.

Hence

sup
x∈S

aTx ≤ inf
y∈T

aT y and inf
x∈S

aTx < sup
y∈T

aT y.

This relation is (1.14) and hence S and T can be separated.

We are now ready to establish Theorem 1.34.

Proof of Theorem 1.34. Let S and T be convex sets in Rn. We show that S and T can be
separated by a hyperplane if and only if their relative interiors have no point in common.
Let S and T be separated by a hyperplane. Using (1.14), we have for some nonzero

vector a ∈ Rn,

sup
x∈S

aTx ≤ inf
y∈T

aT y and inf
x∈S

aTx < sup
y∈T

aT y.

Suppose that the relative interiors of S and T have a point, say x̄, in common. Let us
show that x̄ is a maximizer of aTx over S. Since x̄ ∈ T , we have supx∈S a

Tx ≤ aT x̄.
Hence x̄ is a maximizer of aTx over S. Similarly, we can show that x̄ is a minimizer
of aTx over T . Lemma 1.35 ensures that aTx is constant over the union S ∪ T . This
contradicts the separation of S and T .

Now let the relative interiors of S and T be disjoint. We apply Lemma 1.40 to the
set S′ := rint(S) and T ′ := rint(T ). These two sets are disjoint and Theorem 1.16 says
that they are convex and nonempty. Using Lemma 1.40 and (1.14), we have for some
nonzero vector a ̸= 0,

sup
x∈S′

aTx ≤ inf
y∈T ′

aT y and inf
x∈S′

aTx < sup
y∈T ′

aT y. (1.17)
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We claim that the linear form aTx also separates S and T . The quantities suprema and
infima (1.17) remain unchanged when replacing S′ with its closure cl(S′) and T ′ with its
closure cl(T ′).2 Proposition 1.17 yields cl(S′) = cl(S) and cl(T ′) = cl(T ). We also have
T ⊂ cl(T ) and S ⊂ cl(S). Hence (1.17) yields

sup
x∈S

aTx ≤ inf
y∈T

aT y.

We further have T ′ ⊂ T and S′ ⊂ T . Therefore, the second inequality in (1.17) yields

inf
x∈S

aTx < sup
y∈T

aT y.

1.9.2 Strong Separation Theorem

We provide conditions necessary and sufficient for strong separation of two convex
nonempty sets.

Theorem 1.41. Two nonempty convex sets S and T in Rn can be separated strongly by
a hyperplane if and only if they have a positive distance to each other, that is,

inf
x∈S,y∈T

∥x− y∥2 > 0.

Proof. Suppose that the sets S and T can be strongly separated, that is, there exists
a ̸= 0 such that

sup
x∈S

aTx < inf
y∈T

aT y.

Hence, there exists a constants b′, b′′ ∈ R such that

sup
x∈S

aTx < b′ < b′′ < inf
y∈T

aT y.

2These assertions can be deduced from the following fact. Let X ⊂ Rn be a nonempty set and let
f : cl(X) → R be a continuous function. Then

inf
x∈X

f(x) = inf
x∈cl(X)

f(x).

Since X ⊂ cl(X), we have infx∈X f(x) ≥ infx∈cl(X) f(x). For the reverse inequality, we make use of
the definition of the infimum.

Suppose that infx∈cl(X) f(x) > −∞. Fix ε > 0. Since infx∈cl(X) f(x) > −∞, there exists x̄ ∈ cl(X)
with f(x̄) < infx∈cl(X) f(x) + ε. Since x ∈ cl(X), there exists a sequence (xk) ⊂ X with xk → x̄ as
k → ∞. Combined with the fact that f is continuous, we find that f(xk) < f(x̄) + ε, valid for all
sufficiently large k. Putting together the pieces, we find that

inf
x∈X

f(x) ≤ f(xk) ≤ f(x̄) + ε ≤ inf
x∈cl(X)

f(x) + 2ε.

Since this holds true for all ε > 0, we obtain infx∈X f(x) ≤ infx∈cl(X) f(x).
Suppose that infx∈cl(X) f(x) = −∞. Then for all k ∈ N there exists xk ∈ cl(X) with f(xk) < −k.

Since xk ∈ cl(X) and f is continuous, we can find a point yk ∈ X (close to xk) with f(yk) ≤ f(xk)+1.
Hence f(yk) ≤ −k + 1 yielding infx∈X f(x) = −∞.
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Let us show that S and T must have positive distance. If the distance between the sets is
zero, then there exist sequences (xk) ⊂ S and (yk) ⊂ T with ∥xk − yk∥2 → 0 as k → ∞.
Hence aT (yk − xk) → 0 as k → ∞. We also have aTxk ≤ b′ < b′′ ≤ aT yk for all k ∈ N
and hence aT (yk−xk) ≥ aT yk− b′ ≥ b′′− b′ > 0, contradicting the fact that aT (xk− yk)
converges to zero.
Now let S and T be nonempty and convex with positive distance to each other. Let

us define δ := infx∈S,y∈T ∥x− y∥2. We consider the set

S′ := S + {z ∈ Rn : ∥z∥2 ≤ δ/2}.

The set S′ is convex according to Proposition 1.7. Moreover T is convex, and S′ and
T do not intersect. Thus they can be separated by a hyperplane and we have for some
nonzero a ∈ Rn,

sup
x′∈S′

aTx′ ≤ inf
y∈T

aT y.

Combined with

sup
x′∈S′

aTx′ = sup
x∈S,∥z∥2≤δ/2

aT (x+ z) = sup
x∈S

aTx+ (δ/2)∥a∥2,

we conclude that

sup
x∈S

aTx < inf
y∈T

aT y.

Combined with (1.15), we find that S and T can be separated strongly.

Using Theorem 1.41, we can show that each nonempty closed convex set X ⊂ Rn is
the intersection of closed halfspaces containing X.

Lemma 1.42. If X ⊂ Rn is nonempty, closed, and convex, then X can be represented
as the intersection of closed halfspaces:

X =
⋂

H(a,b) is a hyperplane with X⊂H−(a,b)

H−(a, b).

Proof. Since we intersect all closed halfspaces H−(a, b) with H(a, b) being a hyperplane
such that X ⊂ H−(a, b), we obtain the inclusion “⊂.”
Let us now show the reverse inclusion. Let y ̸∈ X. Then the sets X and {y} have

positive distance to each other, as X is closed. Hence Theorem 1.41 ensures the existence
of a nonzero vector a ∈ Rn and a scalar b ∈ R with

aT y > b, and aTx ≤ b, for all x ∈ X.

Hence y ̸∈ H−(a, b). In particular, y is not contained in the intersection over all closed
halfspaces containing X.
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1.10 Supporting Hyperplanes

The separation theorem, Theorem 1.41, ensures that a closed and nonempty convex set
X is the intersection of all closed halfspaces containing X (see Lemma 1.42). Among
these halfspaces, the most interesting are the “extreme” ones — those with the boundary
hyperplane touching X.
We recall that the relative boundary of a set X ⊂ Rn is the set cl(X) \ rint(X).

Definition 1.43. Let X ⊂ Rn be a closed convex set, and let x̄ be a point from its
relative boundary. For a ∈ Rn \ {0}, the hyperplane

{x ∈ Rn : aTx = aT x̄}

is called supporting to X at x̄ if it separates X and {x̄}.

Let X be a closed convex set ant x̄ be a point from its relative boundary. Then a
hyperplane H(a, b) = {x ∈ Rn : aTx = b} with a ̸= 0 supports X at x̄ if and only if the
linear form aTx attains its maximum over X, the maximum is equal to b, and the linear
form aTx is nonconstant over X.
Let us discuss the existence of supporting hyperplanes.

Proposition 1.44. Let X ⊂ Rn be a closed convex set and let x̄ be a point from its
relative boundary. Then

1. there exists at least one hyperplane supporting to X at x̄, and
2. if a hyperplane Π is supporting to X at x̄, then the set X ∩ Π has dimension less

than that of X.

Proof. 1. Since x̄ is a point from the relative boundary of X, we have x̄ ̸∈ rint(X).
Moreover, we have rint({x̄}) = {x̄}. Hence rint({x̄}) ∩X = ∅. Therefore, the sets {x̄}
and X can be separated by a hyperplane. Hence, there exists a ∈ Rn with a ̸= 0 and
b ∈ R such that

aTx ≤ b for all x ∈ X and aT x̄ ≥ b.

We also have x̄ ∈ X. Hence aT x̄ ≤ b ≤ aT x̄, yielding b = aT x̄.
2. Let Π = {x ∈ Rn : aTx = aT x̄} be a hyperplane supporting X at x̄. Then the set

X ′ := X ∩Π is nonempty, as it contains x̄. Moreover, it is convex as it is the intersection
of convex sets. The linear form aTx is constant on X ′ and therefore it is also constant
on the affine hull Aff(X ′). At the same time, the linear form is nonconstant on X by
definition of a supporting hyperplane. Thus the affine space Aff(X ′) is a proper subset of
Aff(X) and therefore the affine dimension of Aff(X ′) is less than that of Aff(X). (Note
that if P ⊂ Q are two affine subspaces in Rn, then the affine dimension of P is less than
or equal to that of Q and the affine dimensions are equal if and only if P = Q.)
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1.11 Exercises

Exercise 1.1.
Which of the following sets are convex? No justifications are required.
Hint: The answers may depend on n.

1. {x ∈ R2 : x1 + i2x2 ≤ 1, i = 1, . . . , 10}

2. {x ∈ R2 : x21 + 2ix1x2 + i2x22 ≤ 1, i = 1, . . . , 10}

3. {x ∈ R2 : x21 + ix1x2 + i2x22 ≤ 1, i = 1, . . . , 10}

4. {x ∈ R2 : x21 + 5x1x2 + 4x22 ≤ 1}

5. {x ∈ R10 : x21+2x22+· · ·+10x210 ≤ 2004x1−2003x2+2002x3−· · ·+1996x9−1995x10}

6. {x ∈ R2 : exp(x1) ≤ x2}

7. {x ∈ R2 : exp(x1) ≥ x2}

8. {x ∈ Rn :
∑n

i=1 x
2
i = 1}

9. {x ∈ Rn :
∑n

i=1 x
2
i ≤ 1}

10. {x ∈ Rn :
∑n

i=1 x
2
i ≥ 1}

11. {x ∈ Rn : max1≤i≤n xi ≤ 1}

12. {x ∈ Rn : max1≤i≤n xi ≥ 1}

13. {x ∈ Rn : max1≤i≤n xi = 1}

14. {x ∈ Rn : min1≤i≤n xi ≤ 1}

15. {x ∈ Rn : min1≤i≤n xi ≥ 1}

16. {x ∈ Rn : min1≤i≤n xi = 1}

Exercise 1.2 (see [7, Exercise 2.2]).
Show that a set is convex if and only if its intersection with any line is convex.

Exercise 1.3 (Expanded and restricted sets, see [7, Exercise 2.14]).
Let S ⊂ Rn, and let ∥ · ∥ be a norm on Rn.

1. For a ≥ 0, we define Sa = {x ∈ Rn : dist(x, S) ≤ a}, where dist(x, S) = infy∈S ∥x−
y∥. We refer to Sa as S expanded or extended by a. Show that if S is nonempty
and convex, then Sa is convex.
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2. For a ≥ 0, we define S−a = {x ∈ Rn : B(x, a) ⊂ S}, where B(x, a) is the closed ball
(in the norm ∥·∥) centered at x with radius a, that is, B(x, a) = {y ∈ Rn : ∥y−x∥ ≤
a}. We refer to S−a as S shrunk or restricted by a, since S−a consists of all points
that are at least a distance a from Rn \ S. Show that if S is convex, then S−a is
convex.

Exercise 1.4 (A set of hyperplanes, see [7, Exercise 2.21]).
Suppose that C and D are disjoint sets in Rn. Consider the set of points (a, b) ∈ Rn+1

for which aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D. Show that this set is a cone.
Hint: Use Example 1.5.

Exercise 1.5 (see [7, Exercise 2.12]).
Which of the following sets are convex?

1. A slap, that is, a set of the form {x ∈ Rn : α ≤ aTx ≤ β}.
2. A rectangle, that is, a set of the form {x ∈ Rn : αi ≤ xi ≤ βi, i = 1, . . . , n}.
3. A wedge, that is, {x ∈ Rn : aT1 x ≤ b1, a

T
2 x ≤ b2}.

4. The set of points closer to a given point than a given set, that is,

{x ∈ Rn : ∥x− x0∥2 ≤ ∥x− y∥2 for all y ∈ S},

where S ⊂ Rn.
5. The set of points closer to one set than another, that is,

{x ∈ Rn : dist(x, S) ≤ dist(x, T )},

where S, T ⊂ Rn, and

dist(x, S) = inf
z∈S

∥x− z∥2.

6. The set {x ∈ Rn : x+ S2 ⊂ S1}, where S1, S2 ⊂ Rn and S1 is convex.
7. The set of points whose distance to a does not exceed fixed fraction θ of the distance

to b, that is, the set {x ∈ Rn : ∥x− a∥2 ≤ θ∥x− b∥2}. You can assume a ̸= b and
θ ∈ [0, 1].

Exercise 1.6.
Which of the following statements are true? For true statements, provide proofs; for
wrong statements, provide counterexamples.

1. The convex hull of a closed set in Rn is closed.

2. The convex hull of a closed convex set in Rn is closed.
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3. The convex hull of a closed, bounded set in Rn is closed and bounded.

Hints: (i) Use the fact that a set in Rn is compact if and only if it is bounded and
closed. (ii) Continuous functions map compact sets to compact ones.

Exercise 1.7 (see [7, Exercise 2.16]).
Show that if S1 and S2 are convex sets in Rm×n, then their partial sum

S = {(x, y1 + y2) : x ∈ Rm, y1, y2 ∈ Rn, (x, y1) ∈ S1, (x, y2) ∈ S2}

is convex.

Exercise 1.8 (see [3, Exercise 1.2]).
Establish the following statements.

1. The intersection ∩i∈I Ci of a collection Ci, i ∈ I, of cones is a cone.

2. The Cartesian product C1 × C2 of two cones C1 and C2 is a cone.

3. The sum C1 + C2 of two conic sets C1 and C2 is conic.

4. If C ⊂ R is a cone and A ∈ Rm×n is a matrix, then A(C) := {Ax : x ∈ C} and
A−1(C) := {x ∈ Rn : Ax ∈ C} are cones.

Exercise 1.9 (Taking the image of an affine mapping).
Let X ⊂ Rn be convex, let A ∈ Rm×n, and let b ∈ Rm. Let us define the mapping A by
A(x) := Ax+ b. Show that the image of X under the mapping A,

A(X) := {Ax+ b : x ∈ X},

is convex.

Exercise 1.10 (Taking the inverse image under affine mapping).
Let X ⊂ Rn be convex, let A ∈ Rn×m, and let b ∈ Rn. Let us define the mapping A by
A(y) = Ay + b. Show that the inverse image of X under the mapping A,

A−1(X) := {y ∈ Rm : Ay + b ∈ X},

is convex.
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Exercise 1.11.
Let A ∈ Rn×n be symmetric positive definite and let b ∈ Rn and c ∈ R. Show that if
bTA−1b− c > 0, then the set

X = {x ∈ Rn : xTAx+ 2bTx+ c ≤ 0}

is an ellipsoid. (If c ≤ 0 and b ̸= 0 or if c < 0 and b = 0, then bTA−1b− c > 0).

Exercise 1.12 (Kirchberger’s Theorem).
Prove the following Kirchberger’s Theorem:
Let X = {x1, . . . , xk} and Y = {y1, . . . , ym} be finite subsets in Rn with and k+m ≥

n + 2. Let the points x1, . . . , xk, y1, . . . , ym be distinct. If for each subset S ⊂ X ∪ Y
with n+2 points the convex hulls of the sets X ∩S and Y ∩S are disjoint, then convex
hulls of X and Y are disjoint.

Hint: Either one of the following approaches might be helpful:

1. Assume on the contrary that the convex hulls of X and Y intersect so that

k∑
i=1

λix
i =

m∑
j=1

µjy
j (1.18)

for certain nonnegative numbers λi ≥ 0, µj ≥ 0 with
∑k

i=1 λi = 1 and
∑p

j=1 µj = 1,
and look at this expression with the minimum total number of nonzero coefficients
λi, µj .

2. Show that if the convex hulls ofX and Y intersect, then there exists a set T ⊂ X∪Y
with at most n+2 elements such that the convex hulls of the sets X ∩T and Y ∩T
intersect. Subsequently, deduce Kirchberger’s theorem.

Exercise 1.13.
Exercise 1.12 motivates the following statement:

Let X and Y be subsets of Rn. If the convex hulls of X and Y intersect, then there
exists a set S ⊂ X ∪ Y with at most n + 2 elements such that the convex hulls of the
sets X ∩ S and Y ∩ S intersect.

Establish this statement.

Exercise 1.14 (Shapley–Folkman theorem).
The following statement is known as the Shapley–Folkman theorem.

Let Xi ⊂ Rn, i = 1, . . . ,m, be nonempty sets with m ≥ n. Define X := X1+ · · ·+Xm.
Then each x ∈ Conv(X) has a representation x =

∑m
i=1 x

i such that xi ∈ Conv(Xi) for
all indices i ∈ {1, . . . ,m}, and xi ∈ Xi for at least (m− n) indices i.

44



1 Convex Sets

Establish the Shapley–Folkman theorem.

Exercise 1.15 (A min-max optimization problem).
Let fi : Rn → R be convex functions for i = 1, . . . , N with N ≥ n + 1 and N ∈ N. We
consider

inf
x∈Rn

max
i∈{1,...,N}

fi(x).

Let f∗ ∈ R be its optimal value. Show that there exists an index set I ⊂ {1, . . . , N}
with at most n+ 1 elements such that the optimal value of

inf
x∈Rn

max
i∈I

fi(x).

equals f∗.
Hint: Consider the sets Xi := {x ∈ Rn : fi(x) < f∗}, i = 1, . . . , N , and use Helly’s

theorem.

Exercise 1.16.
Let A, B ⊂ Rn be nonempty sets. Show that Conv(A+B) = Conv(A) + Conv(B).

Exercise 1.17 (**Multivariate Chernoff-type bound [5, Thms. 1.3.1 and 1.3.2], [6, Thm.
1.2]).
Let ξ be a random vector with values in Rn, and let B ⊂ Rn be a (measurable) convex
set. Show that

Prob(ξ ∈ B) ≤ e− infζ∈B supa∈Rn { aT ζ−lnE[eaT ξ] }.

Exercise 1.18 (Separation of sets).
Which of the following statements are true? For true statements, provide proofs; for
wrong statements, provide simple counterexamples.

1. If X and Y are nonempty disjoint sets, then they can be strongly separated by a
hyperplane.

2. If X and Y are nonempty disjoint sets and their interiors do not intersect, then X
and Y can be separated by a hyperplane.

3. Let X ⊂ Rn be nonempty, closed, and convex. If y ̸∈ X, then there exist a ∈
Rn \ {0} and b ∈ R such that aT y > b ≥ aTx for all x ∈ X.
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Exercise 1.19 (Homogeneous Farkas lemma).
Establish Farkas’ lemma:
If ai ∈ Rn, i = 1, . . . ,m, and a ∈ Rn, then exactly of the following two systems has a

solution: (i) λ ∈ Rm with a =
∑m

i=1 λiai and λi ≥ 0, i = 1, . . . ,m. (ii) x ∈ Rn such that
aTi x ≤ 0, i = 1, . . . ,m, and aTx > 0.

Hint : For one implication, apply Theorem 1.41 to Cone({a1, . . . , am}) and {a}. Is
Cone({a1, . . . , am}) closed?

Exercise 1.20 (Separation Properties of Cones [3, Problem 1.50]).
Define a homogeneous halfspace to be a closed halfspace associated with a hyperplane
that passes through the origin. Show that:

1. A nonempty closed convex cone is the intersection of the homogeneous halfspaces
that contain it.

2. The closure of the convex cone generated by a nonempty set X is the intersection
of all the homogeneous halfspaces containing X.

Exercise 1.21 (Characterization of Closed Convex Sets [3, Problem 1.52]*).
Let C be a nonempty closed convex subset of Rn+1. Show that if C contains no vertical
lines, then C is the intersection of the closed halfspaces that contain it and correspond
to nonvertical hyperplanes.
Hints:

1. A hyperplane {x ∈ Rn+1 : aTx = b} with a ∈ Rn+1 \ {0} and b ∈ R is called
nonvertical if an+1 ̸= 0.

2. Let w ∈ Rn. The set {(w, τ) : τ ∈ R} is called vertical line in Rn+1.

3. Use Proposition 1.5.8 in [3].

Exercise 1.22 (A polyhedral set).
Let p, q ∈ N. Let {x1, . . . , xp} ⊂ Rn, and let {y1, . . . , yq} ⊂ Rn. We define

X := Conv({x1, . . . , xp}) + Cone({y1, . . . , yq}).

For m ∈ N, we define Rm+ := {x ∈ Rm : xi ≥ 0, i = 1, . . . ,m}.

1. Show that

X =

{
x ∈ Rn : ∃(λ, µ) ∈ Rp+ × Rq+,

p∑
i=1

λi = 1, x =

p∑
i=1

λix
i +

q∑
j=1

µjy
j

}
.
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2. Show that X is polyhedral. Provide a concise answer.

Exercise 1.23 (Minkowski sums of polyhedral sets).
Given two polyhedral sets, is their Minkowski sum a polyhedral set?

Exercise 1.24 (Properties of Infimum and Minimization in Optimization). 1. Provide
an example demonstrating that minx∈X f(x) ̸= infx∈X f(x).

2. Let X ⊂ Rn be nonempty, and let f, g : X → R be function. Show that

inf
x∈X

f(x) + g(x) ≥ inf
x∈X

f(x) + inf
x∈X

g(x)

Show that this inequality can be strict.

3. Let X ⊂ Rn and Y ⊂ Rm be nonempty, and let f : X → R and g : Y → R be
functions. Show that

inf
x∈X,y∈Y

f(x) + g(y) = inf
x∈X

f(x) + inf
y∈Y

g(y)

4. Let X ⊂ Rn and Y ⊂ Rm be nonempty set. Let f : X × Y → R be a function.
Show that

inf
(x,y)∈X×Y

f(x, y) = inf
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

inf
x∈X

f(x, y).

Furthermore, show that

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y).

Show that this inequality can be strict.
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Definition 2.1. A function f : X → R defined on a nonempty set X ⊂ Rn is called
convex if

1. X is convex and
2. for all x, y ∈ X and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

A function f : X → R is called concave if −f : X → R is a convex function. Figure 2.1
provides an illustration.

x

f(x)

λx+ (1− λ)y

f(λx+ (1− λ)y)

y

f(y)

λf(x) + (1− λ) f(y)

Figure 2.1: Illustration of the definition of a convex function. The graph of [0, 1] ∋ λ 7→
λf(x) + (1− λ)f(y) is above that of [0, 1] ∋ λ 7→ f(λx+ (1− λ)y).

Example 2.2. 1. Let a ∈ Rn and b ∈ R. The affine function f : Rn → R defined by
f(x) = aTx+ b is both convex and concave.

2. Each norm ∥ · ∥ on Rn is a convex function. Let λ ∈ [0, 1] and x, y ∈ Rn.
Using the triangle inequality, we obtain ∥λx + (1 − λ)y∥ ≤ ∥λx∥ + ∥(1 − λ)y∥ =
λ∥x∥+ (1− λ)∥y∥.

3. For X = R, the functions x 7→ exp(x) and x 7→ x2p for p ∈ N are convex. The
convexity of these function can be established using Theorem 2.9.

4. For X = R+, the functions x 7→ xp for p ∈ [1,∞) and x 7→ −xp for p ∈ [0, 1] are
convex. The convexity of these function can be established using Theorem 2.9.

48



2 Convex Functions

Let X ⊂ Rn be nonempty and let f : X → R. The set

epi(f) := {(x, t) ∈ X × R : f(x) ≤ t}.

is called epigraph of f .

Theorem 2.3. If X ⊂ Rn is nonempty and convex, then f : X → R is convex if and
only if epi(f) is convex.

Proof. See Exercise 2.1.

2.1 Jensen’s inequality

Below we state the important Jensen inequality.

Proposition 2.4. Let X ⊂ Rn be nonempty and convex, and let f : X → R be convex.
Then for all xi ∈ X, λi ≥ 0, i = 1, . . . ,m, with

∑m
i=1 λi = 1,

f

( m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

Proof. The points (xi, f(xi)) are contained in epi(f). Since epi(f) is convex according
to Theorem 2.3, and

∑m
i=1 λixi and

∑m
i=1 λif(xi) are convex combinations, we have( m∑

i=1

λixi,
m∑
i=1

λif(xi)

)
∈ epi(f).

Using the definition of epi(f), we obtain Jensen’s inequality.

Jensen’s inequality can be generalized. For example, if f : Rn → R is convex and
ξ ∈ Rn is an integrable random vector, then f(E[ξ]) ≤ E[f(ξ)].

Example 2.5. Let p1, . . . , pn > 0 with
∑n

i=1 pi = 1 and q1, . . . , qn > 0 with
∑n

i=1 qi = 1.
We show that the Kullback–Leibler distance

n∑
i=1

pi ln

(
pi
qi

)
between p and q is nonnegative.

The function f(x) = − ln(x) on {x ∈ R : x > 0} is convex. Defining xi = qi/pi and
λi = pi, we have

0 = − ln

( n∑
i=1

qi

)
= f

( n∑
i=1

pixi

)
≤

p∑
i=1

pif(xi) = −
n∑
i=1

pi ln(qi/pi) =
n∑
i=1

pi ln(pi/qi).
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Example 2.6. Jensen’ inequality can be used to establish the inequality of arithmetic
and geometric means

(x1 · x2 · · ·xn)1/n ≤ x1 + x2 + · · ·+ xn
n

for all x ∈ Rn+.

Let us establish this inequality using Jensen’s inequality. If one component of x is equal
to zero, then this inequality holds true. Let now x > 0. The function f(t) = − ln(t) is
convex on (0,∞). Jensen’s inequality implies

− ln

(∑n
i=1 xi
n

)
= f

(∑n
i=1 xi
n

)
≤ (1/n)

n∑
i=1

f(xi) = −(1/n)
n∑
i=1

ln(xi)

= −
n∑
i=1

ln(x
1/n
i ) = − ln(x

1/n
1 · · ·x1/nn ).

Multiplying the inequality with −1 and applying the exponential function, we obtain
the inequality of arithmetic and geometric means.

2.2 Extended real-valued functions

By convention, it is convenient to think that a convex function f is defined everywhere
on Rn and takes real values and the value +∞. With this convention, we say that a
convex function f on Rn is a function taking values in the extended reals R ∪ {+∞}
such that its domain dom(f) := {x ∈ Rn : f(x) ∈ R} is nonempty and for all x, y ∈ Rn
and every λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (2.1)

where we use the following rules

+∞ ≤ +∞,

if a ∈ R, then a+ (+∞) = (+∞) + (+∞) = +∞,

0 · (+∞) = 0,

if a > 0, then a · (+∞) = +∞.

Operations such as (+∞)− (+∞) and (−5) · (+∞) are undefined. The domain dom(f)
of f is the set of points where f is finite.

It is not clear in advance that our new definition of a convex function is equivalent
to the initial one: initially we included into the definition requirement for the domain
be convex, and now we omit explicit indicating this requirement. In fact, of course, the
definitions are equivalent: convexity of dom(f) is a consequence of (2.1). Indeed, if x,
y ∈ dom(f) and λ ∈ [0, 1], then the “convexity inequality” (2.1) ensures λx+(1−λ)y ∈
dom(f).
It is convenient to think of a convex function as a function defined on Rn, as it saves

many technical wordings. For example, with this convention, we can write f + g for
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two convex functions f and g on Rn without explicitly indicating the domain of the new
function f + g. Without this convention, we would need to say f + g is a function with
its domain being the intersection of those of f and g, and on this intersection f + g is
defined by (f + g)(x) = f(x) + g(x).

An extended real-valued function f : Rn → R ∪ {+∞} is called proper if there exists
x ∈ Rn such that f(x) < +∞. In other words, f : Rn → R ∪ {+∞} is proper if its
domain is nonempty. This is to say, f : Rn → R ∪ {+∞} is proper if it is finite at at
least one point.

2.3 Convexity-Preserving Operations

We discuss important operations that preserve convexity functions.

1. Taking conic combinations: If fi(x) are convex functions on Rn and λi ≥ 0 for
i = 1, . . . ,m, then the function

∑m
i=1 λifi(x) is convex, provided that it is finite at at

least one point in Rn.

2. Affine substitutions of arguments: If f(x) is a convex function on Rn, A ∈ Rn×m
is a matrix and b ∈ Rn is a vector, then the function g(y) = f(Ay + b) is convex on
Rm, provided that it is finite at least at one point.

3. Taking suprema: If fα(x) with α ∈ A is a family of convex functions on Rn, then
the function supα∈A fα(x) is convex on Rn, provided that it is finite at least at one
point.

This fact can be established by using epi(supα∈A f(·)) =
⋂
α∈A epi(fα(·)) combined

with the fact that intersections of convex sets are convex.

For example, if A = {1, . . . ,m} and fi are convex functions for i = 1, . . . ,m, then
g(x) = max1≤i≤m fi(x) is a convex function, provided that g is finite at least at one
point in Rn.

4. Superposition theorem: Let fi(x) be convex functions on Rn with i = 1, . . . ,m
and F (y1, . . . , ym) be convex and monotonically increasing on Rm in the sense that
v ≤ w implies F (v) ≤ F (w). Then the function

g(x) =

{
F (f1(x), . . . , fm(x)), if x ∈

⋂
i=1,...,m dom(fi),

+∞ otherwise

is convex, provided that
⋂
i=1,...,m dom(fi) is nonempty.

5. Partial minimization: Let f(x, y) be a convex function on (x, y) ∈ Rn×m and define

g(x) = inf
y∈Rm

f(x, y).

Suppose that g(x) > −∞ for all x ∈ Rn and g(y) < ∞ for some point y ∈ Rn. Then
g is convex.
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Let us verify the convexity of g. By assumption g takes only real values and the value
+∞. Let x′ and x′′ be vectors in Rn and let us show that for all λ ∈ [0, 1],

g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′).

If λ is either 0 or 1, then we have nothing to show. Now let λ ∈ (0, 1). If either
g(x′) = +∞ or g(x′′) = +∞, then we have nothing to verify. Let now g(x′) and g(x′′)
be finite. Let ε > 0. Since g(x′) ∈ R, there exists y′ ∈ Rm such that f(x′, y′) ≤
g(x′) + ε. Similarly, there exists y′′ with f(x′′, y′′) ≤ g(x′′) + ε. We compute

g(λx′ + (1− λ)x′′) ≤ f(λx′ + (1− λ)x′′, λy′ + (1− λ)y′′)

≤ λf(x′, y′) + (1− λ)f(x′′, y′′)

≤ λ
(
g(x′) + ε

)
+ (1− λ)

(
g(x′′) + ε

)
= λg(x′) + (1− λ)g(x′′) + ε.

Since ε > 0 is arbitrary, we obtain g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′).

6. Projective transformation. Let f(x) be a convex function on Rn. Then the
function F (α, x) = αf(x/α) is a convex function on the set {α : α > 0} × Rn.
Let us verify the convexity of F . Since f is finite at at least one point x ∈ R and
F (1, x) = f(x), the function F is finite at the point (1, x). Hence the domain dom(F )
of F is nonempty.

Next, we establish the “convexity inequality” (2.1). Let x, y ∈ Rn, α, β > 0, and let
λ ∈ (0, 1). We need to verify the inequality

F (λα+ (1− λ)β, λx+ (1− λ)y) ≤ λF (α, x) + (1− λ)F (β, y). (2.2)

For the right-hand side in (2.2), we obtain

λF (α, x) + (1− λ)F (β, y) = λαf(x/α) + (1− λ)βf(y/β).

For the left-hand side in (2.2), we obtain

F (λα+ (1− λ)β, λx+ (1− λ)y)

= (λα+ (1− λ)β)f([λx+ (1− λ)y]/(λα+ (1− λ)β))

= (λα+ (1− λ)β)f

(
λα

λα+ (1− λ)β

x

α
+

(1− λ)β

λα+ (1− λ)β

x

α

)
Combining these expression with the convexity of f , we obtain (2.2).

For example, the function α ln(α/β) is convex on the set {(α, β) : α > 0, β > 0}. This
can be verified by applying the projective transformation to ln(1/β) = − ln(β).
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2.4 Derivative-Based Criteria of Convexity

Convexity of sets and functions are one-dimensional properties. A nonempty set X ⊂ Rn
is convex if and only if the one-dimensional sets

{t ∈ R : x+ th ∈ X}

are convex for each x, h ∈ X.

Lemma 2.7. A proper function f : Rn → R∪{+∞} is convex if and only if for each x,
h ∈ Rn, the function

ϕ(t) := f(x+ th)

on R is either convex or identically equal to +∞.

Proof. “⇒” Let us note that each of the functions ϕ is obtained via an affine substitution
of f . This is a convexity-preserving operation as discussed in Section 2.3, provided that
ϕ is proper. If ϕ is not proper, then it is identically equal to +∞.

“⇐” The set dom(f) is nonempty because f is proper. Let x, y ∈ dom(f), and let
λ ∈ [0, 1]. We define h := y − x and ϕ(t) := f(x + t(y − x)). Since ϕ(0) < +∞, ϕ is
convex by assumption. Since ϕ is convex, we obtain

ϕ(λ0 + (1− λ)1) ≤ λϕ(0) + (1− λ)ϕ(1).

Combined with ϕ(0) = f(x), ϕ(1) = f(y), and ϕ(1 − λ) = f(x + (1 − λ)(y − x)) =
f(λx+(1−λ)y), we obtain the convexity of f on dom(f). Hence f is convex on Rn.

Let us now consider a convex function ϕ on an interval (a, b) and let x, y, z ∈ R
with a < x < z < y < b. Let us assume that the derivatives ϕ′(x) and ϕ′(y) exist. Our
intention is to show that ϕ′(x) ≤ ϕ′(y). In other words, ϕ′ is monotonically nondecreasing
on (a, b), provided that ϕ is convex and differentiable. The point z can be written as a
convex combination of x and y:

z =
y − z

y − x
x+

z − x

y − x
y.

Since ϕ is convex, we obtain

ϕ(z) ≤ y − z

y − x
ϕ(x) +

z − x

y − x
ϕ(y).

Hence

ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(z)

y − z
(2.3)

Taking limits in (2.3), as z → x+ 0, we obtain

ϕ′(x) ≤ ϕ(y)− ϕ(x)

y − x
.
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Similary, taking limits in (2.3) as z → y − 0, we obtain

ϕ(y)− ϕ(x)

y − x
≤ ϕ′(y).

Hence, we have ϕ′(x) ≤ ϕ′(y). To summarize, if ϕ is convex on an interval (a, b) and
differentiable on (a, b), then ϕ′ is monotonically nondecreasing.

It turns out that this monotonicity is also sufficient for convexity.

Proposition 2.8. Let (a, b) be an interval with −∞ ≤ a < b ≤ +∞.
1. Let ϕ be a differentiable function on (a, b). Then ϕ is convex on (a, b) if and only

if its derivative ϕ′ is monotonically nondecreasing on (a, b).
2. Let ϕ be a twice differentiable function on (a, b). Then ϕ is convex on (a, b) if and

only if its second derivative ϕ′′ is nonnegative on (a, b).

Proof. 1. We have already shown that ϕ′ is monotonically nondecreasing on (a, b) if
ϕ is convex on (a, b).
Let now ϕ′ be monotonically nondecreasing on (a, b) and let us show that ϕ is convex

on (a, b). Let x, y ∈ (a, b) with x < y and let λ ∈ (0, 1). We define z = λx + (1 − λ)y.
We must show that

ϕ(z) ≤ λϕ(x) + (1− λ)ϕ(y).

This is the same as

ϕ(z)− ϕ(x)

λ
≤ ϕ(y)− ϕ(z)

1− λ
.

Since z − x = λ(y − x) and y − z = (1 − λ)(y − x), we see that the inequality to be
established is equivalent to

ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(z)

y − z
. (2.4)

By the Lagrange mean value theorem, the left-hand side is equal to ϕ′(ξ) for some
ξ ∈ (x, z) and the right-hand side is equal to ϕ′(η) for some η ∈ (z, y). Since ϕ′ is
nondecreasing and ξ ≤ z ≤ η, we have ϕ′(ξ) ≤ ϕ′(η). Therefore, we obtain (2.4).

2. We recall from calculus that a differentiable function on (a, b) is monotonically
nondecreasing if and only if its derivative is nonnegative on (a, b). We apply this fact to
the function ϕ′.

Using Proposition 2.8, we can establish an important necessary and sufficient condition
for convexity of a smooth function of n variables.

Theorem 2.9. Let f : Rn → R∪{+∞} be a function. Suppose that the domain dom(f)
of f is a convex set with nonempty interior and that f is continuous on dom(f) and
twice differentiable on the interior of dom(f). Then f is convex if and only if its Hessian
is positive semidefinite on the interior of dom(f):

hT∇2f(x)h ≥ 0 for all h ∈ Rn and for all x ∈ int(dom(f)).
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Proof. If f is convex and x ∈ int(dom(f)), then the function ϕ(t) = f(x + th) for
arbitrary h ∈ Rn is convex on a neighborhood of the point t = 0, as it is the affine
substitution of the function f . Since f is twice differentiable in a neighbourhood of x,
ϕ is twice differentiable in a neighbourhood of t = 0 and we have ϕ′′(0) = hT∇2f(x)h.
Combined with Proposition 2.8, we find that hT∇2f(x)h ≥ 0.

Now let hT∇2f(x)h ≥ 0 for all x ∈ int(dom(f)) and all h ∈ Rn. Let us first show
that f is convex on int(dom(f)). Proposition 1.14 ensures that int(dom(f)) is a convex
set. Let x, y ∈ int(dom(f)). Since convexity is a one-dimensional property, it suffices to
show that ϕ(t) = f(x+ t(y − x)) is a convex function on [0, 1]. The function ϕ is twice
differentiable on (0, 1). Combined with Proposition 2.8, we obtain

ϕ′′(t) = (y − x)T∇2f(x+ t(y − x))(y − x) ≥ 0.

Hence ϕ is convex on (0, 1). Moreover, ϕ is continuous on [0, 1]. Putting together the
pieces, we find that ϕ is convex on [0, 1]. These considerations imply that f is convex
on int(dom(f)).
It remains to show that f is also convex on dom(f). Since f is continuous on dom(f),

the set dom(f) is closed. Combined with Proposition 1.14, we find that each x ∈ dom(f)
is the limit point of some sequence (xk) contained in int(dom(f)). Let x, y ∈ dom(f)
and let λ ∈ [0, 1]. There exist sequences (xk) and (yk) contained in int(dom(f)) with
xk → x and yk → y as k → ∞. For each k ∈ N, we have

f(λxk + (1− λ)yk) ≤ λf(xk) + (1− λ)f(yk).

Taking limits as k → ∞ and using the continuity of f over dom(f), we find that f(λx+
(1− λ)y) ≤ λf(x) + (1− λ)f(y). Hence f is convex on dom(f).

Theorem 2.9 can be used to establish the convexity of twice differentiable functions.

Example 2.10 (Convexity of log-sum-exp function). Let us show that the log-sum-exp
function f(x) = ln(

∑n
i=1 exp(xi)) is convex on Rn.

Let d ∈ Rn and x ∈ Rn. We compute

∇f(x)Td =

∑n
i=1 exp(xi)di∑n
i=1 exp(xi)

,

dT∇2f(x)d = −
(∑n

i=1 exp(xi)di
)2(∑n

i=1 exp(xi)
)2 +

∑n
i=1 exp(xi)d

2
i∑n

i=1 exp(xi)
.

Let us define λi = exp(xi)/
∑n

i=1 exp(xi) > 0, and ϕ(t) = t2. Using the fact that∑n
i=1 λi = 1 and that ϕ is convex, Jensen’s inequality implies

n∑
i=1

λiϕ(di)− ϕ

( n∑
i=1

λidi

)
≥ 0.
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Moreover, we have

dT∇2f(x)d =
n∑
i=1

λid
2
i −

( n∑
i=1

λidi

)2

=
n∑
i=1

λiϕ(di)− ϕ

( n∑
i=1

λidi

)
≥ 0.

Hence f is convex.
We can establish the convexity of f using a convexity-preserving operation discussed

in Section 2.3. It can be shown that ln(s) = minz∈R [s exp(z)−z−1] for any s > 0. Hence
ln(

∑n
i=1 exp(xi)) = minz∈R [

∑n
i=1 exp(z) exp(xi)− z − 1]. The objective function in the

latter relation is convex in (x, z). It remains to use the convexity-preserving operation
“partial minimization.”

An extremely important property of convex functions is the validity of the gradient
inequality.

Theorem 2.11. Let f : Rn → R ∪ {+∞} be a function, x ∈ Rn be an interior point of
the domain of f , and let X be a convex set with x ∈ X. Suppose that f is convex on X
and differentiable at x. Then

f(y) ≥ f(x) +∇f(x)T (y − x) for all y ∈ X. (2.5)

Proof. Let y ∈ X. If y ̸∈ dom(f) or y = x, then (2.5) holds true. Now let y ̸= x and
y ∈ dom(f). We have for all λ ∈ (0, 1),

f(x+ λ(y − x)) = f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x).

Hence for all λ ∈ (0, 1),

f(λy + (1− λ)x)− f(x) ≤ λf(y)− λf(x).

Dividing by λ ∈ (0, 1), we obtain

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

Taking limits as λ→ 0 and using the fact that f is differentiable at x, we obtain (2.5).

We refer to the inequality (2.5) as gradient inequality. Under additional assumptions
on f the gradient inequality is equivalent to the convexity of f .

Theorem 2.12. Let f : Rn → R∪{+∞} be a function, let X ⊂ Rn be a convex set with
nonempty interior, and let f be continuous on X and differentiable on int(X). Then f
is convex on X if and only if the gradient inequality (2.5) is valid for every x ∈ int(X)
and y ∈ X.

Proof. The implication “⇒” is a consequence of Theorem 2.11. To establish the reverse
implication, let us first show that f is convex on the interior of X. Let λ ∈ (0, 1) and
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let x, y ∈ int(X). Let us define z = y + λ(x− y). We have z = λx+ (1− λ)y ∈ int(X)
(see Proposition 1.14). Using the gradient inequality (2.5), we obtain

λf(x) + (1− λ)f(y)− f(z) = λ
(
f(x)− f(z)

)
+ (1− λ)

(
f(y)− f(z))

≥ λ∇f(z)T (x− z) + (1− λ)∇f(z)T (y − z) = 0.

Hence f is convex on the interior of X. To establish the convexity on X, similar argu-
ments as in the proof of Theorem 2.9 can be used.

2.5 Lipschitz Continuity of Convex Functions*

Convex functions possess nice local properties.

Theorem 2.13. Let f : Rn → R ∪ {+∞} be a convex function and let X be a closed,
bounded set contained in the relative interior of the domain dom(f) of f . Then f is
Lipschitz continuous on X, that is, there exists a constant L (the Lipschitz constant of
f on X) such that

|f(x)− f(y)| ≤ L∥x− y∥2 for all x, y ∈ X.

In particular, f is bounded on X.

Proof. See Theorem 2.4.1 in [1].

All three assumptions onX (1) closedness, (2) boundedness, and (3)X ⊂ rint(dom(f))
made in Theorem 2.13 are essential for the assertion of Theorem 2.13 to be true. We
illustrate this using the following examples.

• f(x) = 1/x with dom(f) = (0,+∞). We consider X = (0, 1]. The set X is
bounded and we have X ∈ rint(dom(f)). However, f is neither bounded nor
Lipschitz continuous on X.

• f(x) = x2 with dom(f) = R. We consider X = R. The set X is closed and
X = int(dom(f)). However, f is neither bounded nor Lipschitz continuous on R.

• f(x) = −
√
x with dom(f) = [0,+∞). We consider X = [0, 1]. The set X is

bounded and X is closed. However, X is not contained in the relative interior of
[0,+∞). The function f fails to be Lipschitz continuous on X.

2.6 Minima of Convex Functions

We show that local minimia of convex functions are global minima.
Let X ⊂ Rn be a nonempty set and let f : X → R ∪ {+∞} be a function. We call a

point x∗ ∈ Rn a (global) minimizer of f over X if x∗ ∈ dom(f)∩X and f(x∗) ≤ f(x) for
all x ∈ X. We call a point x∗ ∈ Rn is a local minimizer of f over X if x∗ ∈ dom(f)∩X
and there exists r > 0 such that f(x∗) ≤ f(x) for all x ∈ X with ∥x− x∗∥2 ≤ r.
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Proposition 2.14. Let X ⊂ Rn be a convex set, let f : X → R ∪ {+∞} be a convex
function, and let x∗ ∈ dom(f)∩X be a local minimizer of f over X. Then x∗ is a global
minimizer of f over X.

Proof. Since x∗ is a local minimizer of f overX, there exists r > 0 such that f(x∗) ≤ f(y)
for all y ∈ X with ∥y − x∗∥ ≤ r. Let x ∈ X with x ̸= x∗. We must show that
f(x∗) ≤ f(x). If f(x) = +∞, then we have nothing to show. Now let f(x) be finite. We
define

t = min

{
1,

r

∥x− x∗∥2

}
and y = tx+ (1− t)x∗.

We have ∥y− x∗∥2 = ∥tx− tx∗∥2 = r. Hence f(x∗) ≤ f(y). Since f(x∗) ≤ f(y) and f is
convex, we obtain

f(x∗) ≤ f(y) ≤ tf(x) + (1− t)f(x∗).

Hence f(x∗) ≤ f(x).

We present an alternative proof of Proposition 2.14. This proof is shorter than the
above one, at the expense of being not constructive.

Proof of Proposition 2.14. Suppose that x∗ is not a local minimizer of f over X. Then
there exists a point x̄ ∈ X such that f(x̄) < f(x∗). For all t ∈ (0, 1), we have f(x∗ +
t(x−x∗)) ≤ tf(x∗)+(1−t)f(x̄) < f(x∗). This contradicts the local optimality of x∗.

For each convex function, its lower level sets are convex.

Lemma 2.15. If f is a convex function on Rn, then for each α ∈ R, the level set
{x ∈ Rn : f(x) ≤ α} is convex.

Proof. Let x and y ∈ Rn with f(x) ≤ α and f(y) ≤ α. For λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ α.

As a consequence of the fact that lower level sets of convex functions are convex, we
obtain the convexity of the set of minimizers of a convex function f .

Proposition 2.16. If f is a convex function on Rn, then the set of global minimizers
of f is convex.

Proof. If f has no global minimizer, then the set of global minimizers is empty and hence
convex. If x∗ is a global minimizer, then we obtain the convexity of the set of minimizers
from Lemma 2.15 with α = f(x∗).
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Our next goal is to analyze uniqueness of minimizers of a convex function. We say
that a function f : Rn → R ∪ {+∞} is strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

for all x ̸= y and λ ∈ (0, 1).

Proposition 2.17. If f is a strictly convex function, then f has at most one minimizer.

Proof. Let x∗ and y∗ be minimizers of f with x∗ ̸= y∗. Since f is strictly convex, we
have

f((1/2)x∗ + (1/2)y∗) < (1/2)f(x∗) + (1/2)f(y∗) = f(x∗).

This is impossible as x∗ is a minimizer of f .

We now state optimality conditions for convex minimization problems.

Theorem 2.18. Let f : Rn → R ∪ {+∞} be a function, let x∗ be an interior point of
dom(f), and let X ⊂ dom(f) be a convex set. Suppose that f be differentiable at x∗ and
that f is convex on X. Then x∗ is a minimizer of f over X if and only if x∗ ∈ X and

∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ X. (2.6)

Proof. “⇒” Let x ∈ X. Hence x ∈ dom(f). Then for all sufficiently small λ ∈ (0, 1),

0 ≤ f(x∗ + λ(x− x∗))− f(x∗)

λ
.

Taking limits as λ→ 0, we obtain (2.6) for all x ∈ dom(f).
“⇐” The gradient inequality (2.5) implies the assertion.

Remark 2.19. The conditions x∗ ∈ X and the ”variational inequality” (2.6) are called
first-order optimality conditions. Actually, the proof of Theorem 2.18 shows that these
first-order optimality conditions are valid without convexity of f .

We discuss an equivalent form of the optimality condition (2.6). Let the hypotheses
of Theorem 2.18 hold true and consider a point x̄ ∈ X. We define the radial cone (or
tangent cone) of X at x̄ by

TX(x̄) = {d ∈ Rn : x̄+ td ∈ X for all sufficiently small t > 0}.

Since X is convex, the set TX(x̄) is a cone consisting of all vectors of the form t(x− x̄),
where x ∈ X and t ≥ 0. Using the radial cone, we can rewrite (2.6) as

∇f(x∗)Td ≥ 0 for all d ∈ TX(x
∗). (2.7)

The optimality conditions (2.6) and (2.7) are equivalent, as X is a convex set. Moreover,
(2.7) is equivalent to

∇f(x∗) ∈ NX(x
∗), (2.8)
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where NX(x
∗) is the normal cone of X at x∗. For x̄ ∈ X, the normal cone of X at x̄ is

defined by

NX(x̄) = {g ∈ Rn : gTd ≥ 0 for all d ∈ TX(x̄)}. (2.9)

Let us provide examples.

Example 2.20. We consider the feasible set

X = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}.

The radial cone of X at x̄ ∈ X is given by

TX(x̄) = {d ∈ Rn : aTi d ≤ 0, for all i ∈ A(x̄)},

where A(x̄) is the set of active constraints at x̄:

A(x̄) = {i ∈ {1, . . . ,m} : aTi x̄ = bi}.

Let us verify this identity for the tangent cone. Let d ∈ Rn and t > 0. We have

aTi (x̄+ td) = aTi x̄+ taTi d = bi + taTi d, for all i ∈ A(x̄).

”⊂” Let x̄+ td ∈ X for all sufficiently small t > 0. Fix a sufficiently small t > 0 and
i ∈ A(x̄). Using bi ≥ bi + taTi d, we obtain aTi d ≤ 0 for i ∈ A(x̄).
”⊃” Now let d ∈ Rn with aTi d ≤ 0 for i ∈ A(x̄). Fix t > 0 and i ∈ A(x̄). Using

aTi d ≤ 0, we obtain aTi (x̄+ td) ≤ bi.

Example 2.21. If X ⊂ Rn is a set and x̄ ∈ int(X), then TX(x̄) = Rn and NX(x̄) = {0}.
Let us verify these assertions. Since x̄ is an interior point of X, there exists a positive
radius r such that the set {y ∈ Rn : ∥x − y∥2 < r} is contained in X. Therefore each
d ∈ Rn is contained in TX(x̄). Hence TX(x̄) = Rn. Using the definition of the normal
cone provided in (2.9), we find that NX(x̄) = {0}.

Therefore, if x∗ ∈ int(X), then (2.6) and (2.8) become the Fermat condition ∇f(x∗) =
0.

Example 2.22. Let x∗ ∈ rint(X). Since Aff(X) is an affine subspace of Rn, we have
Aff(X) = x∗ + L, where L is a linear subspace in Rn. We obtain TX(x

∗) = L and
hence NX(x

∗) = L⊥, where L⊥ = {d ∈ Rn : dTh = 0 for all h ∈ L} is the orthogonal
complement of L. Therefore (2.8) becomes

∇f(x∗) is orthogonal to L.
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2.7 Optimization over Polyhedral Sets

Below we discuss the optimality conditions of minimizing a convex function over a poly-
hedral set. To derive the optimality conditions, we use the homogeneous Farkas lemma.
We consider the homogeneous linear inequality

aTx ≥ 0 (2.10)

and the finite system of the inequalities

aTi x ≥ 0, i = 1, . . . ,m. (2.11)

Here a, a1, . . . , am ∈ Rn are vectors. If a is a conic combination of a1, . . . , am with

a =
m∑
i=1

λiai with λi ≥ 0, (2.12)

then (2.10) is a consequence of (2.11). In other words, if a is a conic combination of
a1, . . . , am and x ∈ Rn satisfies (2.11), then x satisfies (2.10). Let us verify this claim.
Using (2.12), we obtain

aTx =

m∑
i=1

λia
T
i x for all x ∈ Rn.

Hence aTx ≥ 0 if aTi x ≥ 0 for i = 1, . . . ,m.

Lemma 2.23 (Homogeneous Farkas lemma). The inequality (2.10) a consequence of
(2.11) if and only if a is a conic combination of a1, . . . , am.

Before we establish Lemma 2.23, we briefly mention a geometric interpretation of the
Farkas lemma. If a ̸∈ Cone({a1, . . . , am}), then {a} and Cone({a1, . . . , am}) can be
separated by a hyperplane. If x solves (2.11) and aTx < 0, then Cone({a1, . . . , am}) is
contained in the half space {c ∈ Rn : cTx ≥ 0} and a is contained in the open half space
{c ∈ Rn : cTx < 0}. See also Exercise 1.19. This actually provides a proof of the Farkas
lemma. We will now present an alternative proof.

Proof of Lemma 2.23. “⇐” We have already established this direction of the lemma.
“⇒” We show that if a is not a conic combination of a1, . . . , am, then there exists

d ∈ Rn such that aTd < 0 and aTi d ≥ 0, i = 1, . . . ,m. The set K := Cone({a1, . . . , am})
is polyhedrally representable:

Cone({a1, . . . , am}) =
{
x ∈ Rn : ∃λ ∈ Rm+ with x =

n∑
i=1

λiai

}
.

Theorem 1.30 ensures that K is polyhedral. Hence there exist L ∈ N, dℓ ∈ Rn, and
cℓ ∈ R with

K = {x ∈ Rn : dTℓ x ≥ cℓ, ℓ = 1, . . . , L}.
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Since 0 ∈ K, we have cℓ ≤ 0 for ℓ = 1, . . . , L. Since λai ∈ K for all λ > 0, we have
λdTℓ ai ≥ cℓ for all λ > 0. Hence dTℓ ai ≥ 0 for i = 1, . . . ,m and ℓ = 1, . . . , L. If a ̸∈ K,
then we can find an index ℓ ∈ {1, . . . , L} with dTℓ a < cℓ. Since cℓ ≤ 0, we have dTℓ a < 0.
Choosing d = dℓ, we find that aTd < 0 and aTi d ≥ 0, i = 1, . . . ,m.

We derive necessary and sufficient optimality conditions for the minimization of a
convex function over the polyhedral set

X = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}. (2.13)

Let the hypotheses of Theorem 2.18 hold true. As discussed in Example 2.20, the radial
cone of X at x̄ is given by

TX(x̄) = {d ∈ Rn : aTi d ≤ 0, for all i ∈ A(x̄)},

where A(x̄) is the set of active constraints at x̄

A(x̄) = {i ∈ {1, . . . ,m} : aTi x̄ = bi}.

Using the Farkas lemma, Lemma 2.23, we find that the normal cone of X at x̄ is given
by

NX(x̄) = {g ∈ Rn : aTi d ≤ 0, i ∈ A(x̄), d ∈ Rn implies gTd ≥ 0}

=

{
g ∈ Rn : ∃λi ≥ 0 with g = −

∑
i∈A(x̄)

λiai

}
.

Hence the optimality condition (2.8) is equivalent to: there exist λ∗i ≥ 0 for i ∈ A(x∗)
with ∇f(x∗) +

∑
i∈A(x∗) λ

∗
i ai = 0.

Let the hypotheses of Theorem 2.18 hold true. Combining our derivations, we find
that x∗ is a minimizer of the convex, differentiable function f over the polyhedral set
X = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m} defined in (2.13) if and only if there exists
λ∗ ∈ Rm with

∇f(x∗) +
m∑
i=1

λ∗i ai = 0,

λ∗i ≥ 0, i = 1, . . . ,m,

λ∗i (a
T
i x

∗ − bi) = 0, i = 1, . . . ,m,

aTi x
∗ − bi ≤ 0, i = 1, . . . ,m.

(2.14)

Under the hypotheses of Theorem 2.18 on f , the conditions (2.14) provide necessary and
sufficient optimality conditions for the optimization problem

min
x∈Rn

f(x) s.t. aTi x ≤ bi, i = 1, . . . ,m.
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Let us now consider the optimization problem

min
x∈Rn

f(x) s.t. aTi x ≤ bi, i = 1, . . . ,m, cTj x = dj , j = 1, . . . , p, (2.15)

where cj ∈ Rn and dj ∈ R. Reformulating the equality constraints cTj x = dj as the

inequality constraints cTj x ≤ dj and −cTj x ≤ −dj and applying (2.14), we find that x∗ is
a solution to (2.15) if and only if there exists λ∗ ∈ Rm and µ∗ ∈ Rp with

∇f(x∗) +
m∑
i=1

λ∗i ai +

p∑
j=1

µ∗jcj = 0,

λ∗i ≥ 0, i = 1, . . . ,m,

λ∗i (a
T
i x

∗ − bi) = 0, i = 1, . . . ,m,

aTi x
∗ − bi ≤ 0, i = 1, . . . ,m,

cTj x
∗ − dj = 0, j = 1, . . . , p,

provided that f is convex and differentiable at x∗.

Example 2.24. Let us solve the problem

min
x∈Rn

cTx+
n∑
i=1

xi ln(xi) s.t. x ≥ 0,
n∑
i=1

xi = 1. (2.16)

For xi = 0, we define xi ln(xi) = 0. The feasible set X := {x ∈ Rn : x ≥ 0,
∑n

i=1 xi =
1} is convex and the objective function f(x) := cTx +

∑n
i=1 xi ln(xi) is convex and

continuous on X and differentiable on the set {x ∈ Rn : x > 0}.
Let us compute the gradient of f . For x ∈ Rn with x > 0, we have

∇f(x) = c+

ln(x1) + 1
...

ln(xn) + 1


The constraint

∑n
i=1 xi = 1 can be written as two inequality constraints aT1 x ≤ 1 and

aT2 x ≤ −1 with a1 = (1, . . . , 1) and a2 = (−1, . . . ,−1).
Let us assume that x∗ ∈ Rn with x∗ > 0 is a solution to (2.16). Then we must have∑n
i=1 x

∗
i = 1 and for some λ∗ ∈ R,

∇x

[
f(x) + λ∗

( n∑
i=1

xi − 1

)]
x=x∗

= 0.

These n equations are equivalent to ln(x∗i ) = −ci − λ − 1 for i = 1, . . . , n. Hence
x∗i = exp(−1− λ) exp(−ci). Since we must have

∑n
i=1 x

∗
i = 1, we obtain

x∗i =
exp(−ci)∑n
j=1 exp(−cj)

This point satisfies the optimality conditions and hence is a solution to (2.16).
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2.8 Subgradients

Let f : Rn → R∪{+∞} be a convex function and x̄ ∈ int(dom(f)). If f is differentiable
at x̄, then the gradient inequality ensures that the affine function

h(x) := f(x̄) +∇f(x̄)T (x− x̄)

satisfies

f(x) ≥ h(x) for all x ∈ Rn, and f(x̄) = h(x̄). (2.17)

Hence h is an affine minorant and h(x̄) = f(x̄). Such an affine function may also exist
in the case that f is nondifferentiable at x̄ ∈ dom(f) in the sense that for some g ∈ Rn,
the function

h(x) := f(x̄) + gT (x− x̄)

satisfies the conditions in (2.17).
Let f : Rn → R ∪ {+∞} be a convex function and let x̄ ∈ dom(f). A vector g ∈ Rn

such that

f(x) ≥ f(x̄) + gT (x− x̄) for all x ∈ Rn (2.18)

is called a subgradient of f at x̄. The set of all subgradients of f at x̄ is called subdiffer-
ential of f at x̄ and is denoted by ∂f(x̄). We refer to the inequality (2.18) as subgradient
inequality of f at x̄ ∈ dom(f).

Example 2.25. If f : Rn → R ∪ {+∞} is a convex function and differentiable at
x̄ ∈ int(dom(f)), then ∇f(x̄) is the unique element of ∂f(x̄), that is, ∂f(x̄) = {∇f(x̄)}.

The gradient inequality ensures that ∇f(x̄) ∈ ∂f(x̄). Let g ∈ ∂f(x̄). We show that
g = ∇f(x̄). Fix h ∈ Rn and t ∈ Rn. Using the subgradient inequality, we obtain
f(x̄+ th) ≥ f(x̄) + tgTh. Rearranging terms and dividing by t > 0, we have t−1(f(x̄+
th) − f(x̄)) ≥ gTh. Taking limits as t → 0+, we find that ∇f(x̄)Th ≥ gTh. Hence
0 ≥ (g −∇f(x̄))h. Since this inequality is valid for all h ∈ Rn, we obtain g = ∇f(x̄).

Example 2.26. We consider f : R → R defined by f(x) = |x|. If x̄ ̸= 0, then f is
differentiable at x̄ and hence ∂f(x̄) = {f ′(x̄)}. If x̄ = 0, then g is a subgradient of f at
0 if and only if

|x| ≥ 0 + gx = gx for all x ∈ R.

We obtain ∂f(0) = [−1, 1].

Using the separation theorem, we can show the existence of subgradients.

Proposition 2.27. Let f : Rn → R∪ {+∞} be a convex function. If x ∈ rint(dom(f)),
then ∂f(x) is nonempty.
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Proof. We present a proof assuming x ∈ int(X). The point (x, f(x)) ∈ Rn+1 is not a
point from the relative interior of the convex set epi(f) = {(x, t) ∈ Rn+1 : f(x) ≤ t},
since (x, f(x)−r) is not contained in epi(f) for all r > 0. Therefore, the relative interiors
of epi(f) and {(x, f(x))} are disjoint. The separation theorem, Theorem 1.34, ensures
the existence of a vector (a, α) ∈ Rn+1 \ {0} with

(a, α)T (y, t) ≤ (a, α)T (x, f(x)) for all (y, t) ∈ epi(f). (2.19)

This is equivalent to

aT y + αt ≤ aTx+ αf(x) for all (y, t) ∈ epi(f).

Since (y, f(x) + 1) ∈ epi(f), we have α ≤ 0. Suppose that α = 0. Then we have

aT y ≤ aTx.

Since x ∈ int(X), there exists t > 0 with y := x + ta ∈ X. Since (y, f(y)) ∈ epi(f), we
obtain

aT y = aTx+ taTa = aTx+ t∥a∥22 ≥ aT y + t∥a∥22 > aT y.

This is a contradiction. Hence α < 0.
Multiplying (2.19) by 1/|α| and defining g = a/|α|, we obtain

gT y − z ≤ gTx− f(x) for all (y, z) ∈ epi(f).

Let us now choose z = f(y). We obtain

f(y) ≥ f(x) + gT (y − x) for all y ∈ Rn.

The following example shows that a convex function f may lack subgradients at x ∈
dom(f) \ rint(f).

Example 2.28. We define f : R → R ∪ {+∞} by f(x) :=
√
x if x ≥ 0 and f(x) :=

+∞ otherwise. The function f is convex (because, for example, f is continuous on
dom(f), and twice differentiable on (0,+∞) with positive second derivative). We have
0 ̸∈ rint(dom(f)) = (0,= ∞) and ∂f(0) = ∅. The slope of f at 0 fails to be defined,
resulting in ∂f(0) = ∅. Let use verify this statement. Suppose that g ∈ ∂f(0). Then
−
√
x ≥ gx for all x ≥ 0. Hence −

√
1/x ≥ g for all x > 0. Since −

√
1/x → −∞ as

x→ 0+, we cannot have g ∈ R.

Below we provide some basic subgradient calculus for convex functions. Observe that
many of them mimic the calculus for gradient computation.

1. Scaling: If λ > 0 and f : Rn → R ∪ {+∞} is convex, then ∂[λf ] = λ∂f .
2. Addition: IfX ⊂ Rn, f : X → R and g : X → R are convex, then ∂[f+g] = ∂f+∂g.
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3. Affine composition: If f : Rn → R is convex, then g(x) := f(Ax+b) is convex with
∂g(x) = AT∂f(Ax+ b) provided that Ax+ b ∈ dom(f).

4. Finite pointwise maximum: If X ⊂ Rn is convex and open, fi : X → R, i =
1, . . . ,m, are convex, and f(x) := max1≤i≤m f(x), then

∂f(x) = Conv(∪i : fi(x)=f(x)∂fi(x)).

This is the convex hull of the union of subdifferentials corresponding to functions
fi with fi(x) = f(x).

We conclude this section by stating some important results of subgradients without
providing the proof. Let f : Rn → R ∪ {+∞} be convex.

1. For every x ∈ dom(f), ∂f(x) is closed and convex.
2. If x ∈ rint(dom(f)), then for every h ∈ Rn, the directional derivative f ′(x;h) of f

at x in direction h, that is,

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
,

exists and

f ′(x;h) = max
g∈∂f(x)

gTh.

3. Let (xk) ⊂ dom(f) with xk → x ∈ dom(f). Suppose that

f(x) ≤ lim inf
k→∞

f(xk).

If gk ∈ ∂f(xk) converges to some g ∈ Rn as k → ∞, then g ∈ ∂f(x).
4. The multi-valued mapping x 7→ ∂f(x) is locally bounded about every x̄ ∈ int(dom(f)),

that is, whenever x̄ ∈ int(dom(f)), then there exist r > 0 and R <∞ such that if

∥x− x̄∥2 ≤ r and g ∈ ∂f(x),

then ∥g∥2 ≤ R.
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2.9 Exercises

Exercise 2.1.
Prove Theorem 2.3.

Exercise 2.2 (Minimizing linear functions).
Let X ⊂ Rn be a nonempty set, and let c ∈ Rn. Show that

inf
x∈Conv(X)

cTx = inf
x∈X

cTx.

Exercise 2.3.
Which of the following functions are convex on their indicated domains? No justifications
are required.

1. f(x) = 1 on R.

2. f(x) = x on R.

3. f(x) = |x| on R.

4. f(x) = −|x| on R.

5. f(x) = −|x| on R+ = {x ∈ R : x ≥ 0}.

6. f(x) = exp(x) on R.

7. f(x) = exp(x2) on R.

8. f(x) = exp(−x2) on R.

9. f(x) = exp(−x2) on {x ∈ R : x ≥ 100}.

10. f(x) = x ln(x) on {x ∈ R : x > 0}.

11. f(x) = sin(x) on R.

12. f(x) = − ln(x) on {x ∈ R : x > 0}.

Exercise 2.4 (Maximum of a convex function over a polyhedron).
Show that if f is a convex function on Rn and X = Conv(x1, . . . , xm) with xi ∈ Rn, then

sup
x∈X

f(x) = max
i=1,...,m

f(xi).

Hint: Use Jensen’s inequality.
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Exercise 2.5.
Show that the following functions are convex on the indicated domains:

1. f(x, y) = x2/y on {(x, y) ∈ R2 : y > 0}.

2. f(x, y) = 1/(xy) on {(x, y) ∈ R2 : x > 0, y > 0}.

Exercise 2.6 (Products and ratios of convex functions).
In general the product or ratio of two convex functions is not convex. However, there
are some results that apply to functions on R. You may assume that f and g are twice
differentiable. Prove the following.

1. If f and g are convex, both nondecreasing, and positive functions on an interval,
then fg is convex.

2. If f , g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

3. If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex.

Exercise 2.7.
In Example 2.10, we have discussed two approaches to show that the log-sum-exp func-
tion f(x) = ln(

∑n
i=1 exp(xi)) is a convex function on Rn. In this exercise, we establish

the convexity of the log-sum-exp function using the facts that a function is convex if and
only if its epigraph is a convex set and that level sets of convex functions are convex.

1. Show that

epi(f) =

{
(x, t) ∈ Rn × R :

n∑
i=1

exp(xi − t) ≤ 1

}
.

2. Deduce the convexity of the log-sum-exp function f .

Exercise 2.8.
Establish the following statements.

1. If ai ∈ Rn and bi ∈ R, then the function f(x) = ln(
∑n

i=1 exp(a
T
i x+ bi)) is convex.

2. IfA ∈ Rn×n is symmetric positive semidefinite, then the function f(x) = exp(xTAx)
is convex.
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3. If f is concave on Rn and 0 < f(x) < +∞ for all x ∈ Rn, then g(x) = 1/f(x) is
convex.

4. If p ∈ [1,∞) and ∥ · ∥ is a norm on Rn, then ∥ · ∥p is convex.

5. The function f(x, t) := xTx/t is convex over {(x, t) ∈ Rn × R : t > 0}.

6. The function f : Rn → R defined by

f(x) :=

{
(1/2)∥x∥22 if ∥x∥2 ≤ 1,

∥x∥2 − (1/2) otherwise,

is convex. Hint : Show that f(x) = sup∥y∥2≤1 x
T y − (1/2)∥y∥22.

Exercise 2.9 (Inequality of arithmetic and geometric means).
Show that if λ1, . . . , λn are positive scalars with

∑n
i=1 λi = 1, then for every set of

nonnegative scalars x1, . . . , xn, we have

xλ11 · xλ22 · · ·xλnn ≤ λ1x1 + λ2x2 + · · ·+ λnxn

with equality if and only if x1 = x2 = · · · = xn.
Hint: Show that − ln(x) is strictly convex on (0,+∞).

Exercise 2.10.
A function f defined on a convex set X is called log-convex on X if it takes positive
values on X and if the function ln f is convex on X. Show that

1. a log-convex function on X is convex on X.

2. the sum of two log-convex functions on X is log-convex on X.

Hint: Use the fact that the log-sum-exp function is convex (see Exercise 2.7) and
use your knowledge on operations that preserve convexity.

Exercise 2.11.
Let ϕ : R → [0,∞)∪{+∞} be nondecreasing. Let a ∈ R and suppose that ϕ(a) is finite.
Show that the function

f(x) =

∫ x

a
ϕ(t)dt

is convex.
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Exercise 2.12 (Characterization of convexity using gradient monotonicity).
Let f : Rn → R ∪ {+∞} be a function, let X ⊂ Rn be a convex set with nonempty
interior, and let f be continuous on X and differentiable on int(X). Then f is convex
on X if and only if

(∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ int(X). (2.20)

Hint: To show that (2.20) implies convexity of f , use the identity

f(y) = f(x) +

∫ 1

0
∇f(x+ t(y − x))T (y − x)dt

and the characterization of convexity provided in Theorem 2.12.

Exercise 2.13 (Strong convexity).
Let f : Rn → R ∪ {+∞} be a function and let X ⊂ dom(f) be a nonempty, convex
set. Furthermore, let σ > 0 be a scalar. We say that f is strongly convex over X with
parameter (or coefficient) σ if for all x, y ∈ X and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) + (σ/2)λ(1− λ)∥x− y∥22 ≤ λf(x) + (1− λ)f(y).

Note that the Euclidean norm is used in the above inequality.
Strongly convex functions are particularly “nice” functions when it comes to optimiza-

tion. This problem establishes characterizations of strongly convex functions using first-
and second-order derivative criteria, and implications of strong convexity. We use key
properties of convex functions, such as the gradient inequality, to establish these charac-
terizations. See Exercise 2.14 for examples of strongly convex functions.

1. Show that if f is strongly convex over X with coefficient σ, then f is strictly convex
over X.

2. Show that f is strongly convex over X with coefficient σ if and only if the function
g(x) := f(x)− (σ/2)∥x∥22 is convex over X.

This characterization of strong convexity is extremely useful.

3. Suppose that int(X), the interior of X, is nonempty and that f is continuously
differentiable on int(X). Show that the following statements are equivalent:

a) f is strongly convex over X with parameter σ.

b) We have

f(y) ≥ f(x) +∇f(x)T (y − x) + (σ/2)∥x− y∥22 for all x, y ∈ int(X).

c) We have

(∇f(x)−∇f(y))T (x− y) ≥ σ∥x− y∥22 for all x, y ∈ int(X).
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Hints: To establish “ a) implies b)”, use the second part and the gradient inequality.
Exercise 2.12 may also be helpful.

4. If in addition to the conditions in part three, f is twice continuously differentiable
on int(X), then show that the conditions a)–c) are equivalent to ∇2f(x) − σI is
positive semidefinite for each x ∈ int(X).

Exercise 2.14 (Examples of strongly convex functions).
This problem highlights an important strongly convex function. Moreover it establishes
the fact that sums of convex and strongly convex functions are strongly convex.

1. Show that the function (1/2)∥ · ∥22 is strongly convex over Rn with parameter 1.

2. Show that if f is strongly convex over a nonempty convex set X ⊂ Rn with
parameter σ > 0, and g is convex over X, then f + g is strongly convex over X
with parameter σ.

Exercise 2.15.
Provide counterexamples for the following statements.

1. If a function is strictly convex, then it is strongly convex.

2. If a function is strictly convex, then it has a minimizer.

Exercise 2.16 (Minimization of strongly convex functions).
Let f : Rn → R ∪ {+∞} be a function that is continuous and strongly convex over a
nonempty, closed, convex set X with parameter σ > 0.

Show that there exists a unique point x∗ ∈ X that minimizes f over X and that

f(x) ≥ f(x∗) + (σ/2)∥x− x∗∥22 for all x ∈ X.

Inequalities of this type are often referred to as quadratic growth conditions.
This problem demonstrates that every continuous, strongly convex function over a

nonempty closed convex set has a unique minimizer and exhibits quadratic growth around
it.

You may establish your own proof or solve the following subproblems.

1. Let us define g(x) = f(x) − (σ/2)∥x∥22. Show that there exists a ∈ Rn and b ∈ R
such that

g(x) ≥ aTx+ b for all x ∈ X.
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2. Let x0 ∈ X. Deduce that the level set {x ∈ X : f(x) ≤ f(x0)} is bounded.

3. Using the fact that a continuous function on a nonempty, closed, bounded set in
Rn has a minimizer, show that f has a minimizer over X.

4. Complete the proof.

Exercise 2.17 (Convexity under composition, see [3, Exercise 1.3]).
Let C be a nonempty convex subset of Rn. Let also f = (f1, . . . , fm), where fi : C → R,
i = 1, . . . ,m, are convex functions. Let g : Rm → R be convex and monotonically
non-decreasing, in the sense that u ≤ v implies g(u) ≤ g(v). Show that the function
h defined by h(x) = g(f(x)) is convex over C. Show that if in addition m = 1, g is
monotonically increasing, and f is strictly convex, then h is strictly convex.

Exercise 2.18 (Optimality conditions for linear programs).
We consider the linear program

min
x∈Rn

cTx s.t. Ax ≤ b,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. The system of inequalities Ax ≤ b can be written
as aTi x ≤ bi, i = 1, . . . ,m. State the optimality conditions derived in (2.14) for the linear
program.

Exercise 2.19 (Midpoint convexity*).
A function f : R → R is called midpoint convex if for all x, y ∈ R, f((x + y)/2) ≤
(1/2)f(x)+(1/2)f(y). Here, the point (x+y)/2 is called the midpoint of x and y. Show
that a continuous midpoint convex function defined on R is convex.

Hint: The statement can be established using a proof by contradiction or using the
fact that dyadic rational numbers are dense in R.

Exercise 2.20 (Inhomogeneous Farkas Lemma).
Let x̄ be a solution to aTi x ≤ bi, i = 1, . . . ,m, where ai ∈ Rn and bi ∈ R. Let a ∈ Rn
and b ∈ R.
The inequality

aTx ≤ b

is a consequence of

aTi x ≤ bi, i = 1, . . . ,m,
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if and only if there exist scalars λi ≥ 0, i = 1, . . . ,m, such that

a =

m∑
i=1

λiai, b ≥
m∑
i=1

λibi. (2.21)

This statement is known as the inhomogeneous Farkas Lemma.
Establish the inhomogeneous Farkas Lemma. You may either provide your own proof

or solve the following subproblems.

1. Show that if there exist nonnegative scalars λi such that (2.21) holds, then aTx ≤ b
for all x ∈ Rn with aTi x ≤ bi, i = 1, . . . ,m.

2. Suppose that aTx ≤ b for all x ∈ Rn with aTi x ≤ bi, i = 1, . . . ,m. Consider the
linear program

min
x∈Rn

b− aTx s.t. aTi x ≤ bi, i = 1, . . . ,m.

a) Show that the linear program has a solution.

b) Use the optimality conditions (2.14) to establish the existence of nonnegative
scalars λi such that (2.21) holds.

Exercise 2.21 (Fermat’s rule).
Let f : Rn → R∪ {+∞} be convex. Let x∗ ∈ dom(f). Show that x∗ is a minimizer of f
if and only if 0 ∈ ∂f(x∗).

Exercise 2.22.
Let X ⊂ Rn be a nonempty set, and define IX : Rn → R∪{+∞} by IX(x) := 0 if x ∈ X
and IX(x) := +∞ otherwise. Show that X is convex if and only if IX is convex.

Exercise 2.23 (Quasi-convex functions).
Let X ⊂ Rn be nonempty and convex. A function f : X → R is called quasi-convex if
for all x, y ∈ X and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

Let X ⊂ Rn be nonempty and convex. Show that f : X → R is quasi-convex if and
only if {x ∈ X : f(x) ≤ α} is convex for each α ∈ R.
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Exercise 2.24 (Proximal operator).
For a convex, proper, lower semicontinuous function g : Rn → R ∪ {+∞}, we define its
prox-mapping by

proxg(x) := argminy∈Rn (1/2)∥y − x∥22 + g(y).

Show that if g : Rn → R ∪ {+∞} is convex, proper, lower semicontinuous function,
then proxg is well-defined. (proxg is well-defined if for each x ∈ Rn, the minimization
problem defining proxg(x) has a unique solution.)

Exercise 2.25 (Optimality conditions for composite convex optimization I).
Let f : Rn → R be convex and differentiable, and let ψ : Rn → R ∪ {+∞} be convex.
Let x∗ ∈ dom(ψ).
Show that x∗ is a solution to

min
x∈Rn

f(x) + ψ(x)

if and only if

∇f(x∗)T (x− x∗) + ψ(x)− ψ(x∗) ≥ 0 for all x ∈ Rn

if and only if

−∇f(x∗) ∈ ∂ψ(x∗).

Note: This statement generalizes Theorem 2.18.

Exercise 2.26 (Optimality conditions for composite convex optimization II).
Let f : Rn → R be convex and differentiable, and let ψ : Rn → R ∪ {+∞} be convex.
Let x∗ ∈ dom(ψ).
Show that x∗ is a solution to

min
x∈Rn

f(x) + ψ(x)

if and only if for each α > 0,

x∗ = prox(1/α)ψ(x
∗ − (1/α)∇f(x∗)).

Hint : Use Exercises 2.24 and 2.25.

Exercise 2.27 (Subdifferentials are monotone).
Let f : Rn → R ∪ {+∞} be a convex function, and let x, y ∈ dom(f). Show that

(g − h)T (x− y) ≥ 0 for all g ∈ ∂f(x), h ∈ ∂f(y).

Note: This inequality generalizes (2.20).
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Exercise 2.28 (Directional derivatives of proper convex functions).
Let f : Rn → R ∪ {+∞} be convex, and let x ∈ rint(dom(f)).

Establish the following statements.

1. For every h ∈ Rn, the directional derivative f ′(x;h) of f at x in direction h, that
is,

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
,

exists and

f ′(x;h) = inf
t>0

f(x+ th)− f(x)

t
.

Moreover the function t 7→ f(x+th)−f(x)
t is monotonically increasing on (0,∞).

2. The mapping h 7→ f ′(x;h) is positively homogeneous, that is, for all λ ≥ 0 and
h ∈ Rn, f ′(x;λh) = λf ′(x;h).

3. The mapping h 7→ f ′(x;h) is convex, and f ′(x; 0) = 0.

4. For all h ∈ Rn, we have

−f ′(x;−h) ≤ f ′(x;h).

5. For all h ∈ Rn, we have

f(x+ h)− f(x) ≥ f ′(x;h).

6. For each h ∈ Rn,

f ′(x;h) = max
g∈∂f(x)

gTh.

Exercise 2.29 (Convex matrix functions).
The definition of a convex function as provided in Definition 2.1 canonically extends to
sets X in spaces other than Rn.
Establish the following statements.

1. The spectral norm ∥A∥2 of a matrixA ∈ Rn×m is defined by ∥A∥2 := max{∥Ax∥2 : ∥x∥2 ≤
1}. Show that the spectral norm ∥ · ∥2 on Rn×m is convex.

2. Show that the maximum eigenvalue (mapping) λmax(·) on the space of symmetric
n× n matrices is convex.
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Exercise 2.30 (Empirical approximations of composite spectral risk measures [18, pp.
298–299]).
Let F1, . . . , Fm be convex real-valued functions on a convex nonempty set X ⊂ Rn. For
each x ∈ X, let F(1)(x), . . . , F(m)(x) be the objective function values F1(x), . . . , Fm(x)
arranged in increasing order. In other words, F(i)(x) equals the ith-smallest value in
the collection F1(x), . . . , Fm(x). In statistics, F(1)(x), . . . , F(m)(x) is known as the order
statistics of F1(x), . . . , Fm(x).
Let 0 ≤ q1 ≤ · · · ≤ qm <∞ be constants (with

∑m
i=1 qi = 1). Show that

g(x) :=

m∑
i=1

qiF(i)(x)

is convex.
Hints: (i) Establish the following version of the Hardy–Littlewood inequality: for all

q, p ∈ Rm,

m∑
i=1

piqi ≤
m∑
i=1

p(i)q(i),

where q(1) ≤ · · · ≤ q(m) is the order statistics of q1, . . . , qm and p(1) ≤ · · · ≤ p(m) is that
of p1, . . . , pm. (ii) Use convexity-preserving operations as discussed in (2.3).

Exercise 2.31 (Projection onto a polyhedral set).
Let z ∈ Rn and let ai ∈ Rn, i = 1, . . . ,m, where n, m ∈ N with m < n. We consider

min
x∈Rn

(1/2)∥x− z∥22 s.t. aTi x = 0, i = 1, . . . ,m. (2.22)

Let aTi be the ith row of the matrix A ∈ Rm×n. We assume that A has full rank.

1. Show that x∗ solves (2.22) if and only if there exists µ∗ ∈ Rm such that

x∗ − z +
m∑
i=1

µ∗i ai = 0, and aTi x
∗ = 0, i = 1, . . . ,m. (2.23)

2. Show that (2.23) can be written as

x∗ − z +ATµ∗ = 0, and Ax∗ = 0. (2.24)

3. Show that x∗ := z −AT (AAT )−1Az solves (2.22).

Hint : Use parts (a) and (b).

76

https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_inequality


3 Convex Optimization: Duality, Optimality
Conditions, and Saddle Points

We consider the mathematical optimization problem

min
x∈Rn

f(x) s.t. x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p, (3.1)

where
• f is called objective (function),
• X ⊂ Rn is called domain, and
• gi for i = 1, . . . ,m are called inequality constraints, and hj for j = 1, . . . , p are
called equality constraints.

If not stated otherwise, we assume that the objective function and the constraint
functions are well-defined on X.

• A point x ∈ Rn is called feasible for (3.1) if x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m, and
hj(x) = 0, j = 1, . . . , p. The feasible set of (3.1) is the set of all feasible points of
(3.1).

• An inequality constraint gi(x) is called active at a feasible point x if gi(x) = 0.
• A point x∗ ∈ Rn is called optimal solution to (3.1) if it is feasible and f(x∗) ≤ f(x)
for each feasible point x ∈ Rn of (3.1).

• The optimal value f∗ of (3.1) is defined by

f∗ =

{
infx∈X,g(x)≤0,h(x)=0 f(x) if (3.1) has feasible points

+∞ if (3.1) has no feasible points

• The problem (3.1) is said to be bounded from below if the optimal value f∗ is
greater than −∞, that is, if the objective function is bounded from below on the
feasible set.

• The problem (3.1) is called convex ifX ⊂ Rn is convex, f , g1, . . . , gm are real-valued
convex functions on X, and there are no equality constraints.

3.1 Convex Theorem on Alternative

Let c ∈ R be a scalar. We consider the nonlinear system

f(x) < c,

gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X.

(3.2)
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We are interested in certifying insolvability of the nonlinear system (3.2). If λi, i =
1, . . . ,m are nonnegative weights such that the inequality

f(x) +
m∑
i=1

λigi(x) < c

has no solutions in X, that is, if the system

inf
x∈X

[
f(x) +

m∑
i=1

λigi(x)

]
≥ c,

λi ≥ 0, i = 1, . . . ,m,

(3.3)

has a solution, then (3.2) has no solutions.
If the system (3.2) is convex and Slater’s condition holds true, then we obtain a

characterization of insolvability of (3.2). We say that the system (3.2) is convex if
1. X is a nonempty convex set, and
2. the functions f , g1, . . . , gm are real-valued convex functions on X.

We say that the Slater condition is satisfied for (3.2) if the subsystem

x ∈ X, gi(x) < 0, i = 1, . . . ,m

has a solution. Moreover, we say that the relaxed Slater condition is satisfied for (3.2) if
the functions g1, . . . , gk with k ∈ {0, 1, . . . ,m} are affine linear, and there exists a point
x ∈ rint(X) such that gi(x̄) ≤ 0 for i = 1, . . . , k and gi(x̄) < 0 for i = k + 1, . . . ,m. We
allow for k = 0 which corresponds to the functions g1, . . . , gm being possibly nonaffine.
Let us talk a little bit about the geometric interpretation of the system (3.3). Let us

define the vector-valued mapping g : Rn → Rm by

g(x) :=

 g1(x)...
gm(x)

 .
The system (3.3) is equivalent to[

λ
1

]T [
g(x)

f(x)− c

]
≥ 0, for all x ∈ X,

λi ≥ 0, i = 1, . . . ,m.

(3.4)

If there exists λ ∈ Rn satisfying the system (3.4), then the set

M := {(g(x), f(x)− c) : x ∈ X} (3.5)

is contained in the halfspace (λ, 1)T z ≥ 0 with z ∈ Rm defined by a nonvertical hyper-
plane with normal vector (λ, 1).

Theorem 3.1. Let us consider the systems (3.2) and (3.3) with c ∈ R.
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1. If (3.3) has a solution, then (3.2) has no solution.
2. If (3.2) is convex, satisfies Slater’s condition, and has no solution, then (3.3) has

a solution.

Proof. 1. We have established the first part before stating the theorem.
2. To establish the second part, we apply a separation theorem. We consider the sets

T = {u ∈ Rm+1 : ∃x ∈ X : f(x) ≤ u0, gi(x) ≤ ui, i = 1, . . . ,m}

and

S = {u ∈ Rm+1 : u0 < c, ui ≤ 0, i = 1, . . . ,m}.

The sets S and T are nonempty and convex and they do not intersect, as otherwise (3.2)
would have a solution. (The potentially nonconvex set M defined in (3.5) is a subset
of the convex set T .) Using the separation theorem, Theorem 1.34, we find that there
exists a nonzero vector a = (a0, a1, . . . , am) ∈ Rm+1 with

sup
u∈S

aTu ≤ inf
u∈T

aTu.

Let us show that ai ≥ 0 for i = 0, . . . ,m. If ai < 0 for some i ∈ {0, . . . ,m}, we would
have supu∈S a

Tu = +∞ which is impossible as T is nonempty. Since a ≥ 0, we have

sup
u∈S

aTu = sup
u0<c,

ui≤0,i=1,...,m

[a0u0 + · · ·+ amum] = a0c.

Hence

inf
u∈T

aTu ≥ a0c.

For each u ∈ T , we have

a0u0 + a1u1 + · · ·+ amum ≥ a0c

and there exists a point x ∈ X with f(x) ≤ u0 and gi(x) ≤ ui for i = 1, . . . ,m. Hence

inf
x∈X

[a0f(x) + a1g1(x) + · · ·+ amgm(x)] ≥ a0c. (3.6)

Let us now show that a0 > 0. Suppose that a0 = 0. Then (a1, . . . , am) ̸= 0 and

inf
x∈X

[a1g1(x) + · · ·+ amgm(x)] ≥ 0.

Since ai > 0 for at least one i ∈ {1, . . . ,m} and Slater’s condition ensures the existence
of a point x̄ ∈ X with gi(x̄) < 0 for i = 1, . . . ,m, this inequality cannot be true.

Since a0 > 0, we can divide (3.6) by a0. Defining λi = ai/a0 for i = 1, . . . ,m, we
obtain c ≤ infx∈X f(x) +

∑m
i=1 λigi(x).
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We now generalize Theorem 3.1 to allow for the relaxed Slater’s condition rather than
Slater’s condition.

Theorem 3.2. Let us consider the systems (3.2) and (3.3) with c ∈ R.
1. If (3.3) has a solution, then (3.2) has no solution.
2. If (3.2) is convex, satisfies the relaxed Slater condition, and has no solution, then

(3.3) has a solution.

Proof. See Exercise 3.6.

3.2 Lagrange Duality

We consider the optimization problem

min
x∈Rn

f(x) s.t. x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m. (3.7)

We associate with (3.7) the Lagrange function L : Rn × Rm → R defined by

L(x, λ) = f(x) +

m∑
i=1

λigi(x) (3.8)

and its Lagrange dual problem

sup
λ≥0

L(λ), where L(λ) := inf
x∈X

L(x, λ). (3.9)

The function L is called dual function. Let us denote the optimal value of (3.7) by
Opt(P) and that of its dual problem (3.9) by Opt(D). We refer to (3.7) also as primal
problem.

Theorem 3.3 (Weak and strong duality).
1. (weak duality) For every λ ≥ 0, we have L(λ) ≤ Opt(P). In particular,

Opt(D) ≤ Opt(P).

2. (strong duality) If the primal problem (3.7) is convex, bounded from below, and
satisfies Slater’s condition, then the dual problem (3.9) has a solution, and

Opt(D) = Opt(P).

Proof. 1. If the primal problem (3.7) is infeasible, then we have Opt(P) = +∞. If x
is feasible for the primal problem (3.7) and λ ≥ 0, then we have L(x, λ) ≤ f(x). Hence
for λ ≥ 0,

L(λ) = inf
x∈X

L(x, λ)

≤ inf
x is feasible for the primal problem

L(x, λ)

≤ inf
x is feasible for the primal problem

f(x)

= Opt(P)

Taking suprema with respect to λ ≥ 0, we obtain Opt(D) ≤ Opt(P).
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2. We apply the convex theorem on alternative, Theorem 3.1, to establish the existence
of a solution to the dual problem (3.9) and Opt(D) ≥ Opt(P). The feasible set of the
primal problem (3.7) is nonempty, as Slater’s condition holds. Combined with the fact
that the primal problem is bounded from below, we find that Opt(P) is finite. The
system

f(x) < Opt(P), gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X

has no solutions. Theorem 3.1 ensures the existence of nonnegative weights λ∗i ≥ 0 for
i = 1, . . . ,m such that

inf
x∈X

L(x, λ∗) ≥ Opt(P).

Hence

L(λ∗) ≥ Opt(P).

Combined with weak duality, we obtain

Opt(D) = L(λ∗) = Opt(P).

Hence λ∗ ≥ 0 solves the dual problem (3.9).

If the dual optimal value Opt(D) is bounded from below, that is, Opt(D) > −∞, then
the difference

Opt(P)−Opt(D)

is called duality gap. Theorem 3.3 ensures that the duality gap is always nonnegative.
Many algorithms for convex programming us termination criteria based on the duality
gap.

We compute the Lagrangian dual for a linear program.

Example 3.4. We consider the linear program (LP)

min
x∈Rn

cTx s.t. Ax ≤ b,

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The Lagrangian function L is given by

L(x, λ) = cTx+ λT (Ax− b) = −bTλ+ xT (ATλ+ c).

Hence, the (Lagrangian) dual function becomes

L(λ) = inf
x∈Rn

L(x, λ) = −bTλ+ inf
x∈Rn

xT (ATλ+ c) =

{
−bTλ if (ATλ+ c) = 0,

−∞ if (ATλ+ c) ̸= 0.

Therefore, we can write the Lagrangian dual problem as

max
λ∈Rm

−bTλ s.t. ATλ = −c, λ ≥ 0.
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For convex programming problems, Theorem 3.3 provides conditions sufficient for
strong duality.
Whether strong duality holds true or not can depend on the representation of the

constraints.

Example 3.5. We consider the nonconvex optimization problem

min
x∈R

−x2 s.t. |x| − 1 ≤ 0,

with f(x) := −x2 and g(x) := |x| − 1. The optimal value of the primal problem is −1.
For the Lagrange dual function, we obtain

L(λ) = inf
x∈R

−x2 + λ(|x| − 1) = −∞.

Hence Opt(D) = −∞. However, we can show that strong holds true if we consider
instead the equivalent primal problem

min
x∈R

−x2 s.t. x2 − 1 ≤ 0,

with f(x) := −x2 and g(x) := x2 − 1.

Let us note that the primal problem (3.7) can be written in terms of the Lagrange
function. We have

Opt(P) = inf
x∈X

sup
λ≥0

L(x, λ). (3.10)

Indeed, we have for all x ∈ X,

sup
λ≥0

L(x, λ) =

{
f(x) if gi(x) ≤ 0, i = 1, . . . ,m,

+∞ otherwise.

3.3 Saddle Points of the Lagrange Function

We turn our attention to the minimax problem defined in (3.10) and discuss the saddle
point form of optimality conditions for the optimization problem (3.7). A point (x∗, λ∗) ∈
X×Rm+ is called a saddle point of the Lagrange function L defined in (3.8) over X×Rm+
if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all (x, λ) ∈ X × Rm+ .

Let us related saddle points of the Lagrange function to global solutions of the (3.7)
and its Lagrange dual (3.9).

Theorem 3.6.
1. (Characterization of saddle points and sufficient optimality conditions) Let (x∗, λ∗) ∈
X × Rm+ be a point. Then the following statements are equivalent.
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a) (x∗, λ∗) ∈ X × Rm+ is a saddle point of the Lagrange L over X × Rm+ .

b) x∗ is a global solution to (3.7), λ∗ is a global solution to (3.9), and Opt(D) =
Opt(P).

2. (Necessary optimality conditions) If x∗ ∈ X is optimal for (3.7), (3.7) is convex,
and satisfies Slater’s condition, then there exists λ∗ ≥ 0 such that (x∗, λ∗) is a
saddle point of the Lagrange function L over X × Rm+ .

Proof. 1. “⇒” Since (x∗, λ∗) is a saddle point

L(x∗, λ∗) = inf
x∈X

L(x, λ∗) ≤ sup
λ≥0

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ≥0

L(x, λ) ≤ sup
λ≥0

L(x∗, λ) = L(x∗, λ∗)

Hence Opt(D) = Opt(P). We have supλ≥0 L(x
∗, λ) = +∞ if x∗ is infeasible and

supλ≥0 L(x
∗, λ) = f(x∗) otherwise. Since (x∗, λ∗) is a saddle point, we have supλ≥0 L(x

∗, λ) ≤
L(x∗, λ∗) <∞. Hence x∗ is feasible. Moreover

L(λ∗) = f(x∗) = L(x∗, λ∗).

Now weak duality (see Theorem 3.3) implies that x∗ and λ∗ are optimal.
“⇐”We have Opt(D) = L(λ∗) = infx∈X L(x, λ∗), and Opt(P) = f(x∗) = supλ≥0 L(x

∗, λ).
Hence

L(x∗, λ∗) ≤ f(x∗) = Opt(P) = Opt(D) = L(λ∗) = sup
λ≥0

L(x∗, λ) = inf
x∈X

L(x, λ∗) ≤ L(x∗, λ∗).

The first inequality results from λ∗ ≥ 0 and gi(x
∗) ≤ 0, i = 1, . . . ,m. The last inequality

follows from x∗ ∈ X. We deduce

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all (x, λ) ∈ X × Rm+ .

2. Theorem 3.3 ensures the existence of λ∗ ≥ 0 with

f(x∗) = L(λ∗) = inf
x∈X

{
f(x) +

m∑
i=1

λ∗i gi(x)

}
. (3.11)

Combined with the feasibility of x∗, we obtain

f(x∗) = inf
x∈X

{
f(x) +

m∑
i=1

λ∗i gi(x)

}
≤ f(x∗) +

m∑
i=1

λ∗i gi(x
∗) ≤ f(x∗).

Consequently, λ∗i gi(x
∗) = 0, i = 1, . . . ,m. Combined with gi(x

∗) ≤ 0, we obtain

f(x∗) = L(x∗, λ∗) = f(x∗) +
m∑
i=1

λ∗i gi(x
∗)︸ ︷︷ ︸

=0

≥ f(x∗) +

m∑
i=1

λi gi(x
∗)︸ ︷︷ ︸

≤0

= L(x∗, λ) for all λ ≥ 0.

Moreover, (3.11) ensures f(x∗) ≤ L(x, λ∗) for all x ∈ X. Combining these two inequali-
ties, we obtain the assertion.
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3.4 Karush–Kuhn–Tucker Optimality Conditions

We discuss first-order necessary and sufficient optimality conditions for (3.7). We recall
that the normal cone NX(x) of X at x ∈ X is the set

NX(x) = {h ∈ Rn : hT (y − x) ≥ 0 for all y ∈ X }.

Theorem 3.7. Let (3.7) be a convex optimization problem, let x∗ ∈ Rn, and let f ,
g1, . . . , gm be differentiable at x∗.

1. (Sufficiency) If there exist Lagrange multipliers λ∗i ∈ R, i = 1, . . . ,m, such that

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) ∈ NX(x
∗),

x∗ ∈ X, λ∗i ≥ 0, gi(x
∗) ≤ 0, λ∗i gi(x

∗) = 0, i = 1, . . . ,m,

(3.12)

then x∗ is a solution to (3.7).
2. (Necessity and sufficiency) If furthermore the Slater’s condition holds for (3.7),

then the KKT conditions in (3.12) are necessary and sufficient for x∗ to be an
optimal solution to (3.7).

The conditions in (3.12) are referred to as KKT conditions for (3.7). The conditions
λ∗i gi(x

∗) = 0, i = 1, . . . ,m, are referred to as complementary conditions.

Proof of Theorem 3.7. 1. In light of Theorem 3.6 it suffices to show that (x∗, λ∗) is a
saddle point of the Lagrange function L over X ×Rm+ . We have ∇xL(x

∗, λ∗) ∈ NX(x
∗).

Combined with the convexity of L(·, λ∗) and of X, and Theorem 2.18 with (2.8), we
obtain L(x, λ∗) ≥ L(x∗, λ∗) for all x ∈ X. The complementary conditions and the
feasbility of x∗ ensure L(x∗, λ∗) ≥ L(x∗, λ) for all λ ≥ 0. Putting together the pieces,
we find that (x∗, λ∗) is a saddle point of L over X ×Rm+ . Now Theorem 3.6 ensures that
x∗ is optimal.

2. Theorem 3.6 ensures that there exists a saddle point (x∗, λ∗) of L over X × Rm+ .
Hence the complementary conditions hold and L(x, λ∗) ≥ L(x∗, λ∗) for all x ∈ X.
Hence x∗ is a minimizer of L(·, λ∗) over X. Using Theorem 2.18 with (2.8), we obtain
∇xL(x

∗, λ∗) ∈ NX(x
∗).

3.5 Saddle points*

It is possible to consider a more general form of the minimax problem than that in
(3.10): Let X ⊂ Rn and Λ ⊂ Rm be nonempty sets and F : X ×Λ → R be a real-valued
function on X × Λ. This setting gives rise to two optimization problems:

Opt(P′) = inf
x∈X

sup
λ∈Λ

F (x, λ),

Opt(D′) = sup
λ∈Λ

inf
x∈X

F (x, λ).
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A short verification shows that

sup
λ∈Λ

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ). (3.13)

Indeed, for all x ∈ X and λ ∈ Λ, we have

F (x, λ) ≤ sup
λ∈Λ

F (x, λ).

Minimizing over x ∈ X, we obtain

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ).

Now maximization over λ ∈ Λ ensures (3.13). The inequality (3.13) is sometimes called
max-min inequality. If

sup
λ∈Λ

inf
x∈X

F (x, λ) = inf
x∈X

sup
λ∈Λ

F (x, λ),

then we say that f (and X and Λ) satisfy the saddle-point property. We refer to the
tuple (x∗, λ∗) ∈ X × Λ as saddle point of F over X × Λ if

F (x∗, λ) ≤ F (x∗, λ∗) ≤ F (x, λ∗) for all (x, λ) ∈ X × Λ.

We observe that the notion of a saddle point of a Lagrangian function L over X ×Rm+ is
a special case of the above definition. Theorem 3.6 can be extended to this more general
setting.
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3.6 Exercises

Exercise 3.1.
Compute the minimizer of the linear function

f(x) = cTx

over the set

Vp =

{
x ∈ Rn :

n∑
i=1

|xi|p ≤ 1

}
,

where 1 < p <∞.
Hint: Use the KKT conditions established in Theorem 3.7.

Exercise 3.2.
Let a1, . . . , an > 0 and let α, β > 0. Solve the optimization problem

min
x∈Rn

n∑
i=1

ai
xαi

s.t. x > 0,
n∑
i=1

xβi ≤ 1.

Hint: Use the variable transformation yi = xβi to obtain a convex optimization problem,
and use the KKT conditions to solve the optimization problem.

Exercise 3.3.
Consider the optimization problem

max
x∈Rn,t∈Rn

ξTx+ τt+ ln(t2 − xTx) s.t. (x, t) ∈ X := {(x, t) : t >
√
xTx},

where ξ ∈ Rn and τ ∈ R are parameters. Is the problem convex? For which choices of
parameters is the problem solvable? What is the optimal value? Is the optimal value
convex in the parameters?

Exercise 3.4.
Consider the optimization problem

max
x,y∈R

ax+ by + ln(ln(y)− x) + ln(y) s.t. (x, y) ∈ X := {(x, y) ∈ R2 : y > exp(x)},

where a, b ∈ R are parameters. Is the problem convex? For which choices of parameters
is the problem solvable? What is the optimal value? Is the optimal value convex in the
parameters?
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Exercise 3.5 (Inconsistency of strict convex inequalities).
Let gi : Rn → R, i = 1, . . . ,m be convex functions and let X be a nonempty convex set.

1. Consider the optimization problem

min
(x,t)∈Rn×R

t s.t. x ∈ X, gi(x) ≤ t, i = 1, . . . ,m. (3.14)

Show that the corresponding dual function L is given by

L(λ) =

{
infx∈X

∑m
i=1 λigi(x) if

∑m
i=1 λi = 1,

−∞ if
∑m

i=1 λi ̸= 1,

2. Show that the system

gi(x) < 0, i = 1, . . . ,m

has no solution in X if and only if there exists λi ∈ R, i = 1, . . . ,m with

λi ≥ 0, i = 1, . . . ,m,
m∑
i=1

λi = 1,

m∑
i=1

λigi(x) ≥ 0, for all x ∈ X.

Exercise 3.6.
Prove Theorem 3.2.

Exercise 3.7 (Strong duality of the trust-region subproblem*).
We consider the trust-region subproblem

min
x∈Rn

xTAx+ 2bTx s.t. ∥x∥22 ≤ 1, (3.15)

where A ∈ Rn×n is a symmetric matrix and b ∈ Rn is a vector. This problem arises
in trust-region methods as a subproblem. We define f(x) := xTAx + 2bTx and g(x) =
∥x∥22 − 1. Let L(x, λ) = f(x) + λg(x) be its Lagrangian.
Show that strong duality holds for (3.15). You can provide your own proof or solve

the following subproblems. Let λmin := λmin(A) be the minimum eigenvalue of A.

1. Let λmin(A) be nonnegative. Show that strong duality holds.

For the remainder, let λmin(A) < 0.
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2. Establish min∥x∥22≤1 {x⊤Ax+2b⊤x } = min∥x∥22≤1 {x⊤(A−λminI)x+2b⊤x+λmin1 }.
Hints: You can use without proof the following facts.

(i) Since λmin < 0, each solution x∗ to(3.15) satisfies ∥x∗∥2 = 1.

(ii) Since the minimum eigenvalue of A−λminI is zero, min∥x∥22≤1 {x⊤(A−λminI)x+

2b⊤x } has a solution y∗ with ∥y∗∥2 = 1.

3. Prove that min∥x∥22≤1 {x⊤(A−λminI)x+2b⊤x+λmin } ≤ supλ∈R≥0
infx∈Rn L(x, λ),

where L is the Lagrangian function corresponding to (3.15).

4. Combine the above computations with weak duality to deduce the strong duality
for(3.15).

Exercise 3.8 (Projection onto ℓ1-unit ball).
Let x ∈ Rn. Show that the solution P (x) to

min
v∈Rn

(1/2)∥v − x∥22 s.t. ∥v∥1 ≤ 1

is given by PC(x) = x if ∥x∥1 ≤ 1 and by

P (x)k = sign(xk)max{|xk| − λ∗, 0} =


xk − λ∗ if xk > λ∗

0 if − λ∗ ≤ xk ≤ λ∗

xk + λ∗ if xk < −λ∗

otherwise, where λ∗ is the solution to

n∑
k=1

max{|xk| − λ∗, 0} = 1.

Hint: Use Theorem 3.6.

Exercise 3.9 (Projection onto probability simplex).
Let x ∈ Rn. Show that the solution P (x) to

min
v∈Rn

(1/2)∥v − x∥22 s.t. ∥v∥1 = 1, v ≥ 0

is given by

P (x)k = max{xk − λ, 0},

where λ∗ is the solution to
n∑
k=1

max{xk − λ, 0} = 1.
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Hints: (i) The projection problem is equivalent to

min
v∈Rn

(1/2)∥v − x∥22 + IRn
≥0
(v) s.t. ∥v∥1 = 1,

where IRn
≥0
(v) = +∞ if v ≥ 0 and IRn

≥0
(v) = 0 otherwise. (ii) Use Theorem 3.6.

Exercise 3.10 (proximal mapping).
A function f : Rn → (−∞,∞] is lower semicontinuous if for each r ∈ R, the level set
{x ∈ Rn : f(x) ≤ r} is closed.

For a proper, convex, lower semicontinuous function f , the proximal mapping is de-
fined by

proxf (x) := argminv∈Rnf(v) + (1/2)∥x− v∥22.

This mapping is well-defined (the optimization problem has a unique solution). If f is
the indicator function of a nonempty, closed, convex set S, then proxf (x) becomes the
projection of x onto S.

Show the following implications. Let t ≥ 0.

1. If f(x) = ∥x∥2, then

proxtf (x) = max{1− t/∥x∥2, 0}x =

{
(1− t/∥x∥2)x if ∥x∥2 ≥ t

0 otherwise

2. If A ∈ Rn×n is symmetric and positive definite, and f(x) = (1/2)xTAx+ bTx+ c,
then

proxtf (x) = (I + tA)−1(x− tb).

Exercise 3.11 (Trust-region composite subproblems*).
We consider

min
x∈Rn

xTAx+ 2bTx+ γ∥x∥1 s.t. ∥x∥22 ≤ 1, (3.16)

where γ ≥ 0, A ∈ Rn×n is a symmetric matrix, and b ∈ Rn is a vector. We are interested
in whether strong duality holds for (3.16). Let L(x, λ) := xTAx+2bTx+γ∥x∥1+λ(∥x∥22−
1) be the Lagrangian of (3.16).

• Show that if n = 1, γ = 1, A = −2, and b = 0, then the optimal value of (3.16) is
−1 and dual optimal value is −2.

• Show that if n = 1, γ = 1, A = −1, and b = 2, then the optimal value of (3.16) is
−2 and dual optimal value is −2.

89



3 Convex Optimization: Duality, Optimality Conditions, and Saddle Points

• Let λ∗ be a solution to the Lagrangian dual to (3.16), and let x(λ∗) be a solution
to

min
x∈Rn

L(x, λ∗). (3.17)

Does x(λ∗) solve (3.16)?

• Show that the optimal value of

min
x∈Rn,X∈Sn

A •X + 2bTx+ ∥x∥1 s.t. A • I ≤ 1, X ≽ xxT

is less than or equal to that of (3.16).

Exercise 3.12 (Duality: Recovering the primal solution from the dual solution).
Let f : Rn → R and gi : Rn → R, i = 1, . . . ,m be functions, where m ∈ N. We consider

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m. (P1)

Let L : Rn × Rm → R be the Lagrangian corresponding to (P1).
Suppose that

1. λ∗ is a solution to the Lagrangian dual of (P1),

2. the minimizer of x 7→ L(x, λ∗) over Rn exists and is unique, and

3. strong duality holds.

We denote the minimizer of x 7→ L(x, λ∗) by x∗. Let Opt(D) be the optimal value of
the Lagrange dual problem, and let Opt(P ) be that of the primal problem.

1. Show that

Opt(P ) = Opt(D) = L(x∗, λ∗).

2. Show that if x∗ is not feasible for (P1), then (P1) does not have a solution.

3. Deduce that if (P1) has a solution, then x∗ is feasible for (P1).

4. Show that if (P1) has a solution, then it is equal to x∗.

5. Show that if x∗ is feasible for (P1), and L(x
∗, λ∗) = f(x∗), then x∗ solves (P1).

6. If x∗ is feasible for (P1), is it true that L(x∗, λ∗) = f(x∗)?
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Exercise 3.13 (Three-point lemma (Euclidean version), Lemma 3.5 in [12]).
Let f : Rn → R be a proper, lower semicontinuous, and convex function. Let y ∈ Rn
and let γ > 0. Show that if

u∗ ∈ argminu∈Rn{ f(u) + (γ/2)∥y − u∥22 },

then for all x ∈ Rn,

f(u∗)− f(x) ≤ (γ/2)
(
∥x− y∥22 − ∥u∗ − y∥22 − ∥u∗ − x∥22

)
.

Deduce

f(u∗)− f(y) ≤ −γ∥u∗ − y∥22.

Hint : Use Exercise 2.25.
Note: This statement and its variants form the basis of demonstrating convergence

statements for proximal point methods.

Exercise 3.14.
Let γ > 0, and let f : Rn → R be a proper, lower semicontinuous, and convex function.
Show that if

u∗ ∈ argminu∈Rn{ f(u) + (γ/6)∥u∥32 },

then for all x ∈ Rn,

f(u∗)− f(0) ≤ −(γ/2)∥u∗∥32
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Optimization Problems

We consider the nonlinear optimization problem

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p. (4.1)

where f : Rn → R is the objective function, gi : Rn → R are the inequality constraints,
and hj : Rn → R are the equality constraints. We define the mappings g : Rn → Rm
and h : Rn → Rp by

g(x) :=

 g1(x)...
gm(x)

 , and h(x) :=

h1(x)...
hp(x)

 .
This notation is useful when establishing theoretical statements, but less so for analytic
computations.
A point x is called feasible for (4.1) if g(x) ≤ 0 and h(x) = 0. For a feasible point x,

we define the set of active inequality constraints A(x) by

A(x) := { i ∈ {1, . . . ,m} : gi(x) = 0 }.

The equality constraints hj(x) = 0, j = 1, . . . , p, are active by definition.
We introduce further terminology. A point x∗ ∈ Rn is a (global) solution to (4.1) if

it is feasible for (4.1) and f(x∗) ≤ f(x) for all feasible x. A point x∗ ∈ Rn is a local
solution to (4.1) if it is feasible for (4.1) and if there exists r > 0 such that f(x∗) ≤ f(x)
for all for all feasible x with ∥x − x∗∥2 ≤ r. A point x∗ ∈ Rn is a strict local solution
to (4.1) if it is feasible for (4.1) and if there exists r > 0 such that f(x∗) < f(x) for all
feasible x ̸= x∗ with ∥x− x∗∥2 ≤ r. Figure 4.1 provides an illustration.
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x

strict local solution

global solution

Figure 4.1: The graph of a function, the feasible set (thick black line), and the strict
local and global solutions/minimizers.

Given a local solution x∗ to (4.1), we derive first-order and second-order necessary
conditions that are satisfied at x∗. Moreover, we derive second-order sufficient optimality
conditions.

4.1 First-order optimality conditions

In the following theorem, we state first-order optimality conditions for the constrained
problem (4.1). They are referred to as first-order conditions, as they involve first-order
derivatives. The validity of these first-order optimality conditions are based on a condi-
tion on the constraints in (4.1).

Definition 4.1. A feasible point x for (4.1) is called regular if the gradients ∇gi(x),
i ∈ A(x), and ∇hi(x), i = 1, . . . , p, are linearly independent.

In other words, a feasible point (4.1) is regular if the gradients of the active con-
straints are linearly independent. A necessary condition for a point to be regular is that
the number of active constraints is less than or equal to n. Indeed, if the number of
active constraints exceeds n, then the gradients of active constraints cannot be linearly
independent.
The Lagrange function L : Rn × Rm × Rp → R associated with (4.1) is defined by

L(x, λ, µ) := f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x).

Theorem 4.2. Let f , g, and h be continuously differentiable and let x∗ be a local solution
to (4.1). Suppose that x∗ is regular. Then there exist Lagrange multipliers λ∗ ∈ Rm and
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µ∗ ∈ Rp such that

∇xL(x
∗, λ∗, µ∗) = 0,

hj(x
∗) = 0, j = 1, . . . , p,

λ∗i ≥ 0, gi(x
∗) ≤ 0, gi(x

∗)λ∗i = 0, i = 1, . . . ,m.

(4.2)

Theorem 4.2 remains valid if no inequality constraints are present in (4.1). In this
case, we omit all terms involving λ∗ and g in (4.2). Moreover, Theorem 4.2 remains valid
if no equality constraints are present in (4.1). In this case, we omit all terms involving
µ∗ and h in (4.2).

Note that the conditions gi(x
∗) ≤ 0, i = 1, . . . ,m, and hj(x

∗) = 0, j = 1, . . . , p, are
a direct consequence of x∗ being a local solution to (4.1), as a local solution must be
feasible. We have λ∗i = 0 if gi(x

∗) < 0. In other words, if the ith inequality constraint is
inactive, then the corresponding Lagrange multiplier must be zero.
If f , g, and h are differentiable, then we have

∇xL(x, λ, µ) = ∇f(x) +
m∑
i=1

λi∇gi(x) +
p∑
i=1

µi∇hi(x).

Using this gradient formula, we find that the conditions in (4.2) imply that −∇f(x∗) is
a linear combination of the gradients ∇gi(x∗), i ∈ A(x∗) and ∇hj(x∗), j = 1, . . . , p. If
there are no equality constraints in (4.1), then the conditions in (4.2) imply that that
−∇f(x∗) is a conic combination of the gradients ∇gi(x∗), i ∈ A(x∗). Figure 4.2 provides
an illustration.

∇f(x∗)

∇g1(x∗)

∇g2(x∗)

x∗

g1(x) = 0

g2(x) = 0

g3(x) = 0

Figure 4.2: The gray region is the feasible set. The point x∗ is feasible and −∇f(x∗) is a
conic combination of ∇g1(x∗) and ∇g2(x∗). Hence x∗ is a KKT point. The
point x∗ is regular, as ∇g1(x∗) and ∇g2(x∗) are not linearly dependent.

We introduce standard terminology.

Definition 4.3. 1. The conditions in (4.2) are referred to as Karush–Kuhn–Tucker
(KKT) conditions of (4.1).
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2. A feasible point x∗ ∈ Rn is called KKT point of (4.1) if there exist λ∗ ∈ Rm and
µ∗ ∈ Rp such that the conditions in (4.2) hold.

3. If (x∗, λ∗, µ∗) satisfy the KKT conditions, then (x∗, λ∗, µ∗) is referred to as KKT
triple.

4. The condition

gi(x
∗)λ∗i = 0, i = 1, . . . ,m.

is referred to as complementarity condition or complementary condition.

Using this terminology, Theorem 4.2 ensures that local solutions to (4.1) are KKT
points, provided that they satisfy a constraint qualification. However, the KKT condi-
tions are not sufficient optimality conditions for nonconvex optimization problems. If a
point x∗ is a KKT point of (4.1) and (4.1) is nonconvex, it may not be a local solution.
We illustrate this on an example.

Example 4.4. We consider

min
x∈R

−x2 s.t. x2 − 1 ≤ 0.

In order to formulate this problem as an instance of (4.1), we define f(x) = −x2 and
g(x) = x2 − 1. The global minimizers to the problem are ±1 and x∗ = 0 is the global
maximizer. We have for all λ∗ ∈ R,

f ′(x∗) + λ∗g′(x∗) = −2x∗ + 2λ∗x∗ = 0.

Moreover, g(x∗) = −1 and hence (x∗, 0) is a KKT point of (4.1). However, it is not even
a local minimizer.

Before we discuss a proof of Theorem 4.2, we consider an optimization problem with
unique solution which fails to be a KKT point.

Example 4.5. We consider the one-dimensional optimization problem

min
x∈R

x s.t. x2 = 0. (4.3)

Since x∗ = 0 is the only feasible point of (4.3), it is the unique solution to (4.3). In order
to formulate (4.3) as an instance of (4.1), we define f(x) := x and h(x) := x2. We have
f ′(x) = 1 and h′(x) = 2x. Hence for all µ ∈ R,

f ′(x∗) + µh′(x∗) = 1.

Therefore, x∗ = 0 is not a KKT point of (4.3). Since h′(x∗) = 0, x∗ is not a regular
point of (4.3).
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4.1.1 Proof of the first-order necessary conditions

Before we establish the first-order necessary conditions in Theorem 4.2, we derive first-
order optimality conditions for unconstrained minimization problems.

Proposition 4.6. Let U ⊂ Rn be open and let f : U → R be differentiable. If x∗ ∈ U is
a local minimizer of f , then ∇f(x∗) = 0.

To establish Proposition 4.6, we can reduce ourselves to a “one-dimensional” setting.
If x∗ is a local minimizer of f , then for each direction d ∈ Rn, t∗ = 0 is a local minimizer
of ϕ(t) := f(x∗ + td). Hence 0 = ϕ′(0) = ∇f(x∗)Td. Choosing d = ∇f(x∗) yields
∇f(x∗) = 0.

We present a somewhat alternative proof of Proposition 4.6. It provides a motivation
for some technical steps in the proof of Theorem 4.2.

Proof of Proposition 4.6. Let d ∈ Rn and let (tk) ⊂ (0,∞) be a sequence converging to 0
as k → ∞. Since x∗ is a local minimizer of f , there exists r > 0 such that f(x∗) ≤ f(x)
for all x ∈ Rn with ∥x− x∗∥2 ≤ r. Let us define xk := x∗ + tkd. For all sufficiently large
k ∈ N, we have ∥xk − x∗∥2 = tk∥d∥2 ≤ r and

f(xk) ≥ f(x∗).

Hence

f(x∗ + tkd)− f(x∗)

tk
≥ 0.

Taking limits as k → ∞, we find that

∇f(x∗)Td ≥ 0.

This inequality is valid for all d ∈ Rn. Let us choose d = −∇f(x∗). Then we have

−∇f(x∗)T∇f(x∗) ≥ 0.

In other words, ∥∇f(x∗)∥22 ≤ 0. Hence ∇f(x∗) = 0.

We prepare our proof of Theorem 4.2. To derive first-order necessary optimality con-
dition for a local solution x∗, we would like to use ideas from the proof of Proposition 4.6.
In the proof of Proposition 4.6, we constructed for arbitrary d ∈ Rn, a perturbation,
xk = x∗+tkd, of x

∗ that approaches x∗ as k increases. Therefore, we have f(xk) ≥ f(x∗)
for sufficiently large k. The special perturbation, xk = x∗ + tkd, has allowed us to make
use of the differentiability of f to obtain the inequality ∇f(x∗)Td ≥ 0. We would like
to apply a similar approach for establishing Theorem 4.2. However, this approach raises
at least one question: given d ∈ Rn, why should x∗ + td be feasible for (4.1) for any
t > 0? In general, the points x∗ + td may be infeasible for (4.1). Therefore, we need a
more technical constructions of perturbations xk of x∗. This construction exploits the
regularity of x∗. Furthermore, if x∗ + td would be feasible for (4.1) for all t > 0 and all
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d ∈ Rn, then we would have ∇f(x∗) = 0, as the proof of Proposition 4.6 shows. We will
need to restrict ourselves to directions d ∈ Rn from some smaller set than Rn.
For a feasible point x for (4.1), we define

Tℓ(g, h, x) := {d ∈ Rn : ∇gi(x)Td ≤ 0, i ∈ A(x), ∇hj(x)Td = 0, j = 1, . . . , p }. (4.4)

This set is a nonempty closed cone and is sometimes referred to as the set of linearized fea-
sible directions. If the problem formulation (4.1) does not involve inequality constraints,
we write Tℓ(h, x) and if it does not involve equality constraints, we write Tℓ(g, x). We
have come across this cone already in Example 2.20. If the inequality constraints are
given by gi(x) = aTi x − bi and we have no equality constraints in (4.1), then Tℓ(g, x)
equals the radial cone TX(x) of the set X = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}; see
Example 2.20.
Figure 4.3 provides an illustration.

∇f(x∗)

∇g1(x∗)

∇g2(x∗)

x∗

g1(x) = 0

g2(x) = 0

g3(x) = 0

Figure 4.3: The gray region is the feasible set. The light gray area is the shifted cone
x∗+Tℓ(g, x

∗). For directions d ∈ Tℓ(g, x
∗) with small norm, the points x∗+d

are “close” to being feasible.

Its name can be motivated by considering first-order expansions of g and h: for d ∈
Tℓ(g, h, x

∗) and small t > 0, we have

hi(x
∗ + td) ≈ hi(x

∗) + t∇hi(x∗)Td = t∇hi(x∗)Td = 0, i = 1, . . . , p.

If i ∈ A(x∗), then

gi(x
∗ + td) ≈ gi(x

∗) + t∇gi(x∗)Td = t∇gi(x∗)Td ≤ 0.

If i ̸∈ A(x∗), we have gi(x
∗) < 0. Since gi is differentiable and hence continuous, we

have gi(x
∗ + td) < 0 for small t > 0.
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Given d ∈ Tℓ(g, h, x
∗), we construct a sequence (xk) of feasible points for (4.1) such

that (xk) converges to x∗ and dk := k−1(xk−x∗) converges to d. Therefore, we eventually
have f(xk) ≥ f(x∗). It will allow us to show that ∇f(x∗)Td ≥ 0 for all d ∈ Tℓ(g, h, x

∗).
Figure 4.4 depicts an illustration of this construction.

x2
x3

x7

d7

x∗
∇g(x∗)

Figure 4.4: The gray region is the feasible set defined by the inequality constraint g(x) =
x21 + x22 − 1. For x∗ = (1, 0), we have ∇g(x∗) = (2, 0) ̸= 0. So x∗ is a regular
point. The vector d = (0, 1) is contained in Tℓ(g, h, x

∗). The sequence

xk =

[√
1− (1/k)2

1/k

]
is feasible, as g(xk) = 0, and approaches x̄. Moreover

dk := k(xk − x̄) approaches d as k → ∞.

Lemma 4.7. If x∗ is feasible for (4.1) and regular, then for each d ∈ Tℓ(g, h, x
∗), there

exist feasible points xk of (4.1) with xk → x∗ as k → ∞ such that k(xk − x∗) → d as
k → ∞.

The proof of Lemma 4.7 is based on an application of the implicit function theorem
stated next. We use Fx(x, y) to denote the partial derivative of F with respect to x.

Theorem 4.8 (Implicit function theorem). Let F : Rn × Rs → Rn be q-times continu-
ously differentiable with q ∈ N and let (x̄, ȳ) ∈ Rn×Rs be a point with F (x̄, ȳ) = 0. Sup-
pose that the matrix Fx(x̄, ȳ) ∈ Rn×n is invertible. Then there exist open sets U ⊂ Rn×Rs
and W ⊂ Rs with (x̄, ȳ) ∈ U and ȳ ∈W having the following properties:

1. For every y ∈W , there exists a unique x ∈ Rn such that

(x, y) ∈ U and F (x, y) = 0. (4.5)

2. If this x is defined to be G(y), then the mapping G : W → Rn is q-times continu-
ously differentiable with G(ȳ) = x̄ and

G′(ȳ) = −Fx(x̄, ȳ)−1Fy(x̄, ȳ).

Using the implicit function theorem, we are ready to establish Lemma 4.7. We denote
by |A(x∗)| the number of active inequality constraints and by gA(x∗) the component func-
tion gi of g with i ∈ A(x∗). In other words, gA(x∗) consists of those component functions
of g corresponding to active inequality constraints. We recall that the derivative H ′ of
a mapping H is the transpose of its gradient ∇H. In other words, H ′(y) = ∇H(y)T .
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Proof of Lemma 4.7. We use the implicit function theorem to establish the assertion.
Let A ∈ Rn×|A(x∗)|+p be the matrix with columns ∇gi(x∗), i ∈ A(x∗), and ∇hi(x∗),
i = 1, . . . , p. By assumption A has full rank. Let B ∈ Rn×n−|A(x∗)|−p be a matrix such
that its columns form a basis of the null space of AT . Since x∗ is regular, the square
matrix [

AT

BT

]
is invertible.
Let d ∈ Tℓ(g, h, x

∗). We define F : Rn × R → Rn by

F (x, t) =

gA(x∗)(x)− t∇gA(x∗)(x
∗)Td

h(x)− t∇h(x∗)Td
BT (x− x∗ − td)


To apply the implicit function theorem, Theorem 4.8, we verify its hypotheses.

1. F is continuously differentiable,
2. F (x∗, 0) = 0, and
3. we have

Fx(x, 0) =

g′A(x∗)(x)

h′(x)
BT

 .
Hence

Fx(x
∗, 0) =

[
AT

BT

]
Since the hypotheses of the implicit function theorem are satisfied, there exist open sets
U ⊂ Rn × R and W ⊂ R such that (x̄, 0) ∈ U and 0 ∈W with the following properties:

1. For every t ∈W , there exists a unique x(t) ∈ Rn such that F (x(t), t) = 0.
2. x(t) is continuously differentiable onW , x(0) = x∗, x′(0) = −∇xF (x

∗, 0)−1∇tF (x̄, 0).
Since x(t) is continuously differentiable onW , it is continuous. Hence we have x(t) → x∗

as t→ 0. Moreover, we have

x(t)− x∗

t
→ x′(0).

Let us compute x′(0). We have

Ft(x̄, 0) =

−∇gA(x∗)(x
∗)Td

−∇h(x∗)Td
−BTd

 =

[
−ATd
−BTd

]
= −

[
AT

BT

]
d.

Hence

x′(0) = −Fx(x∗, 0)−1Ft(x̄, 0) =

[
AT

BT

]−1 [
AT

BT

]
d = d.
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Since F (x(t), t) = 0 and d ∈ Tℓ(g, h, x
∗), we obtain for t ∈W ,

gA(x∗)(x(t)) = t∇gA(x∗)(x
∗)Td ≤ 0,

h(x(t)) = t∇h(x∗)Td = 0.
(4.6)

If i ̸∈ A(x∗), then we have gi(x
∗) < 0. Combined with the continuity of gi and x(t) → x∗

as t → 0, we find that gi(x(t)) < 0 for all sufficiently small t ∈ W . Therefore x(t) is
feasible for (4.1), provided that t ∈W is sufficiently small.

Now, we can construct the points xk. Since W ⊂ R is open and 0 ∈ W , the set W is
an open interval about 0. So we have 1/k ∈W for all sufficiently large k ∈ N. The above
computations show that x(1/k) is feasible for (4.1) for all sufficiently large k ∈ N. For
all such k’s, we define xk = x(1/k). Otherwise, we choose xk = x∗. Our computations
show that the xk’s are feasible and that k(xk − x∗) → d as k → ∞.

Using Lemma 4.7, we can establish a first-order necessary optimality condition. This
condition is key to establishing the validity of the KKT conditions.

Lemma 4.9. Under the hypotheses of Theorem 4.2, we have ∇f(x∗)Td ≥ 0 for all
d ∈ Tℓ(g, h, x

∗).

The assertion of Lemma 4.9 is interesting. It implies that the vector d∗ = 0 is a
solution to the linear program (LP)

min
d∈Rn

∇f(x∗)Td s.t. ∇gi(x∗)Td ≤ 0, i ∈ A(x∗), ∇hj(x∗)Td = 0, j = 1, . . . , p. (4.7)

Proof of Lemma 4.9. Let d ∈ Tℓ(g, h, x
∗). Using Lemma 4.7, there exist sequences (xk)

with xk → x∗ as k → ∞ and xk is feasible for (4.1) and (tk) ⊂ (0,∞) with tk → 0 as
k → ∞ such that dk := (xk − x∗)/tk converges to d as k → ∞.

Since x∗ is a local solution, there exists r > 0 such that f(x) ≥ f(x∗) for all feasible
points x with ∥x − x∗∥2 ≤ r. As xk → x∗ as k → ∞, there exists a natural number K
such that ∥xk − x∗∥ ≤ r for all k ≥ K.
Using a first-order Taylor’s expansion, we obtain

f(xk)− f(x∗) = ∇f(x∗)T (xk − x∗) + o(∥xk − x∗∥2),

where o(t) is a function with o(t)/t → 0 as t → 0. For k ≥ K, we have f(xk) ≥ f(x∗).
Hence for k ≥ K,

0 ≤ ∇f(x∗)T (xk − x∗) + o(∥xk − x∗∥2).

Dividing by tk > 0 and using dk = (xk − x∗)/tk, we obtain

0 ≤ ∇f(x∗)Tdk + o(∥xk − x∗∥2)
∥xk − x∗∥2

· ∥dk∥2.

Taking limits as k → ∞, we obtain

∇f(x∗)Td ≥ 0.
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We are now ready to establish Theorem 4.2. Our proof applies the homogeneous
Farkas lemma to the assertion of Lemma 4.9. An alternative approach is to apply LP
duality to the LP (4.7).

Proof of Theorem 4.2. We apply the homogeneous Farkas lemma to the assertion of
Lemma 4.9. The assertion of Lemma 4.9 is: ∇f(x∗)Td ≥ 0 for all d ∈ Tℓ(g, h, x

∗). Using
the definition of Tℓ(g, h, x

∗), we obtain ∇f(x∗)Td ≥ 0 for all d ∈ Rn with ∇gi(x∗)Td ≤ 0
for i ∈ A(x∗) and ∇hi(x∗)Td ≤ 0 and −∇hi(x∗)Td ≤ 0 for i = 1, . . . , p. The homo-
geneous Farkas lemma ensures the existence of nonnegative vectors λ ∈ R|A(x∗)| and
µ+ ∈ Rp and µ− ∈ Rp such that

∇f(x∗) +
∑

i∈A(x∗)

λi∇gi(x∗) +
p∑
i=1

(µ+ − µ−)i∇hi(x∗) = 0.

We define λ∗i = λi if i ∈ A(x∗) and λ∗i = 0 otherwise, and µ∗ = µ+ − µ−. These defi-
nitions ensure the complementary condition λ∗i gi(x

∗) = 0, i = 1, . . . ,m. To summarize,
(x∗, λ∗, µ∗) satisfy the KKT conditions.

4.1.2 Further interpretations

Our proof of Theorem 4.2 relies on the technical statements, Lemmas 4.7 and 4.9. As
discussed after the formulation of Lemma 4.9, the hypotheses of Theorem 4.2 ensures
that the direction d∗ = 0 solves the LP (4.7). It turns out that under the hypotheses of
Theorem 4.2, the KKT point x∗ considered in Theorem 4.2 is a solution to the LP

min
x∈Rn

f(x∗) +∇f(x∗)T (x− x∗)

s.t. gi(x
∗) +∇gi(x∗)T (x− x∗) ≤ 0, i = 1, . . . ,m,

hj(x
∗) +∇hj(x∗)T (x− x∗) = 0, j = 1, . . . , p.

(4.8)

Since this optimization problem is an LP, we can also use optimality conditions for LPs
to establish the KKT conditions.
Let us now provide a relationship between the LPs (4.7) and (4.8).

Lemma 4.10. Let x∗ ∈ Rn feasible for (4.1). The point d∗ = 0 is a solution to the LP
(4.7) if and only if x∗ is a solution to the LP (4.8).

Proof. “⇒” Let d∗ = 0 be a solution to the LP (4.7) and let x ∈ Rn be feasible for (4.8).
We have to show that

f(x∗) +∇f(x∗)T (x− x∗) ≥ f(x∗).

Let us define d = x− x∗. The point d is feasible for the LP (4.7). Hence

∇f(x∗)Td ≥ ∇f(x∗)Td∗ = 0.

Hence x∗ is a solution to (4.8).
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“⇐” Now let x∗ be a solution to (4.8) and let d ∈ Rn be feasible for (4.7). We have
to show that d∗ = 0 solves (4.7). Let us consider the points xt = x∗ + td and show that
xt is feasible for (4.8), provided that t > 0 is sufficiently small. We have for all t > 0,

0 = hj(x
∗) +∇hj(x∗)T (xt − x∗) = 0 + t∇hj(x∗)Td, j = 1, . . . , p.

If i ∈ A(x∗), then we have gi(x
∗) = 0 and

0 ≥ gi(x
∗) +∇gi(x∗)T (td) = ∇gi(x∗)T (td).

If i ̸∈ A(x∗), then we have gi(x
∗) < 0 and hence

gi(x
∗) +∇gi(x∗)T (td) ≤ 0

for all sufficiently small t > 0. Therefore xt is feasible for (4.8) for some t > 0. We have

f(x∗) + t∇f(x∗)Td = f(x∗) +∇f(x∗)T (xt − x∗) ≥ f(x∗).

Hence d∗ = 0 solves the LP (4.7).

4.1.3 Constraint Qualifications

In the first-order necessary optimality conditions provided in Theorem 4.2, we may
replace the sentence

“Suppose that x∗ is a regular point.”

by

“Suppose that x∗ satisfies a constraint qualification.”

We define the technical notion ”constraint qualification.” Let M ⊂ Rn be a nonempty
set and let ȳ ∈M . The tangent cone of M at ȳ is defined by

TM (ȳ) := {d ∈ Rn : ∃ηk > 0, yk ∈ X, yk → ȳ, ηk(y
k − ȳ) → d}.

The tangent cone of the feasible set of (4.8) is the linearized tangent cone defined in
(4.4) (this fact is very helpful for graphical illustrations). For a cone K ⊂ Rn, we define
its polar cone K◦ by

K◦ := {v ∈ Rn : vTd ≤ 0 for all d ∈ K}.

Let X be the feasible set of (4.1). The Guignard constraint qualification (GCQ) is
satisfied at x̄ ∈ X if

Tℓ(g, h, x̄)
◦ = T (X, x̄)◦.

Any condition implying GCQ is called a constraint qualification. We provide a non-
exhaustive list of constraint qualifications (CQs).
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• The constraints g and h are affine linear
• The constraints g are convex and h is affine linear, and there exists a point y ∈ Rn
with g(y) < 0 and h(y) = 0 (Slater’s condition).

• The function g is concave and h is affine.
• Mangasarian–Fromovitz CQ (MFCQ): A feasible point x satisfies the MFCQ if

1. ∇h(x) as full column rank, and

2. there exists d ∈ Rn with

∇gi(x)Td < 0, i ∈ A(x), ∇h(x)Td = 0.

• Generalized MFCQ: A feasible point x satisfies the generalized MFCQ if

1. ∇h(x) as full column rank, or h is affine linear, and

2. there exists d ∈ Rn with

∇gi(x)Td < 0, i ∈ A(x), ∇h(x)Td = 0.

All of these conditions ensure the assertion of Lemma 4.9, that is, if x∗ is a lo-
cal solution to (4.1) and x∗ satisfies one of the above constraint qualifications, then
∇f(x∗)Td ≥ 0 for all directions d ∈ Tℓ(g, h, x

∗).
Roughly speaking, constraint qualifications ensure that the feasible set of the non-

linear problem (4.1) provides a “good” approximation of feasible set of the linearized
optimization problem (4.8) for all points x in a neighborhood of x∗. Figure 4.5 depicts
an example where the feasible set of (4.1) provides a poor approximation to that of
(4.7).

x2

x1x∗

Figure 4.5: The thick black lines illustrate the feasible of an instance of the nonlinear
problem (4.1) with g1(x) = −x1, g2(x) = −x2, g3(x) = x1x2, and the feasible
point x∗ = 0. The light gray area is the cone Tℓ(g, x

∗).

*If gi, i = 1, . . . ,m, are convex and hj , j = 1, . . . , p, are affine linear, and there exists
a feasible point, then the generalized MFCQ and Slater’s condition are equivalent. To
establish this fact, let x be feasible. Suppose that there exists y ∈ Rn with g(y) < 0 and
h(y) = 0. We show that d = y − x satisfies the conditions of the generalized MFCQ.
Since gi are convex, the gradient inequality implies for i ∈ A(x),

0 > gi(y) ≥ gi(x) +∇gi(x)T (y − x) = ∇gi(x)Td.
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Since hj are affine linear, we have 0 = h(y) = h(x) + ∇h(x)T (y − x) = ∇h(x)Td.
Consequently, d = y − x satisfies the conditions in the generalized MFCQ.
Now, let x be a feasible point that satisfies the generalized MFCQ. Then there exists

d ∈ Rn with ∇gi(x)Td < 0, i ∈ A(x) and ∇h(x)Td = 0. For any t > 0, we have
h(x + td) = h(x) + t∇h(x)Td = h(x) = 0, as h is affine and x is feasible. Let i ∈ A(x)
and define ϕ(t) = gi(x + td). We have ϕ(0) = gi(x) = 0 and ϕ′(0) = ∇gi(x)Td < 0.
Hence for all sufficiently small t > 0, we have ϕ(t) < 0 and therefore gi(x + td) < 0. If
i ̸∈ A(x), then gi(x) < 0. Since gi is continuous, we have gi(x+td) < 0 for all sufficiently
small t > 0. We conclude that x+ td satisfies the Slater’s condition for some t > 0.

4.2 Second-order necessary optimality conditions

Theorem 4.2 provides first-order necessary optimality conditions. In this section, we
establish second-order necessary optimality conditions.
The formulation of these second-order necessary conditions require us to introduce

a cone related to that in (4.4). Let (x, λ) ∈ Rn × Rm be a vector. To formulate the
second-order conditions, we define the critical cone

T+(g, h, x, λ) = Tℓ(g, h, x) ∩ { d ∈ Rn : ∇gi(x)Td = 0 if i ∈ A(x) and λi > 0 }. (4.9)

The set T+(g, h, x, λ) is a closed nonempty cone. Using the definition of Tℓ(g, h, x)
provided in (4.4), we can write

T+(g, h, x, λ) =

{
d : ∇gi(x)Td

{
= 0 if i ∈ A(x) and λi > 0,

≤ 0 if i ∈ A(x) and λi = 0,
∇hj(x)Td = 0, j = 1, . . . , p

}
.

Now we state second-order necessary optimality conditions.

Theorem 4.11. Let f , g, and h be twice continuously differentiable, and let x∗ be a
local solution to (4.1). Suppose that x∗ is regular. Then there exists Lagrange multipliers
λ∗ ∈ Rm and µ∗ ∈ Rp such that (x∗, λ∗, µ∗) is a KKT triple of (4.1) and

dT∇2
xL(x

∗, λ∗, µ∗)d ≥ 0 for all d ∈ T+(g, h, x
∗, λ∗).

The second-order necessary optimality conditions may be used to show that a KKT
point of (4.1) is not a local solution of (4.1). See Exercise 4.2.
The proof of Theorem 4.11 consists of two steps: Fix d ∈ T+(g, h, x

∗, λ∗).
1. Construct feasible points xk for (4.1) with (xk − x∗)/tk → d as k → ∞, where
tk > 0 with tk → 0 as k → ∞. This uses regularity of x∗.

2. Demonstrate dT∇2
xL(x

∗, λ∗, µ∗)d ≥ 0. This uses, among other things, feasibility of
xk, local optimality of x∗, and the fact that (x∗, λ∗, µ∗) is a KKT triple of (4.1).

Before establishing second-order necessary conditions for (4.1), we derive second-order
necessary conditions for unconstrained minimization problems in Proposition 4.12. This
serves two purposes. First, the proof of Theorem 4.11 uses ideas that of Proposition 4.12.
Second, we utilize Proposition 4.12 in our proof of Theorem 4.11.
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Proposition 4.12. Let U ⊂ Rn be open and let f : U → R be twice continuously
differentiable. If x∗ ∈ U is a local minimizer of f , then ∇f(x∗) = 0 and ∇2f(x∗) is
positive semidefinite.

Proof. Proposition 4.6 ensures ∇f(x∗) = 0. Let d ∈ Rn be a vector. We define ϕ(t) :=
f(x∗+td). The function ϕ is twice continuously differentiable, t∗ = 0 is a local minimizer
of ϕ, and ϕ′(0) = 0. Using a second-order Taylor’s expansion, we have as t→ 0,

ϕ(t) = ϕ(0) + ϕ′(0)t+ (1/2)ϕ′′(0)t2 + o(t2).

Using ϕ′(0) = 0 and ϕ(t) ≥ ϕ(0) for all sufficiently small t > 0, we obtain

0 ≤ (1/2)ϕ′′(0)t2 + o(t2).

Dividing by t2 and taking limits as t→ 0, we obtain ϕ′′(0) ≥ 0. It remains to note that
ϕ′′(0) = dT∇2f(x∗)d.

Proof of Proposition 4.12. The existence of Lagrange multipliers and the fact that (x∗, λ∗, µ∗)
is a KKT triple of (4.1) is implied by Theorem 4.2.
Let d ∈ T+(g, h, x

∗, λ∗). Let us define the set A0 = {i : ∇gi(x∗)Td = 0}. Since
d ∈ T+(g, h, x

∗, λ∗), we can use the technique in the proof of Lemma 4.7 to construct
feasible points xk with (xk−x∗)/tk → d as k → ∞, where tk > 0 with tk → 0 as k → ∞.
Because of our construction of the points xk, we obtain from (4.6),

hj(x
k) = tk∇hj(x∗)Td, j = 1, . . . , p, and gi(x

k) = tk∇gj(x∗)Td, i ∈ A0.

If i ̸∈ A0, then we either have gi(x
∗) < 0 or i ∈ A(x∗) with ∇gi(x∗)Td < 0. If gi(x

∗) < 0,
then the complementary condition yields λ∗i = 0. If i ∈ A(x∗) with ∇gi(x∗)Td < 0, then
d ∈ T+(g, h, x

∗, λ∗) yields λ∗i = 0. Combined with d ∈ T+(g, h, x
∗, λ∗), we have

L(xk, λ∗, µ∗) = f(xk) +

m∑
i=1

λ∗i gi(x
k) +

p∑
j=1

µ∗jhj(x
k)

= f(xk) +
∑
i∈A0

λ∗i gi(x
k) +

p∑
j=1

µ∗jhj(x
k)

= f(xk)− tk
∑
i∈A0

λ∗i∇gj(x∗)Td− tk

p∑
j=1

µ∗j∇hj(x∗)Td

= f(xk).

Using a second-order Taylor’s expansion of L(·, λ∗, µ∗) about x∗, we obtain

L(xk, λ∗, µ∗) = L(x∗, λ∗, µ∗) +∇xL(x
∗, λ∗, µ∗)T (xk − x∗)

+ (1/2)(xk − x∗)T∇xxL(x
∗, λ∗, µ∗)(xk − x∗) + o(∥xk − x∗∥22).
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The complementary condition further implies f(x∗) = L(x∗, λ∗, µ∗) and we have∇xL(x
∗, λ∗, µ∗) =

0. Putting together the pieces, we find that

f(xk) = f(x∗) + 1/2)(xk − x∗)T∇xxL(x
∗, λ∗, µ∗)(xk − x∗) + o(∥xk − x∗∥22).

Since xk is feasible and x∗ is a local solution, we have f(xk) ≥ f(x∗) for all sufficiently
large k. We obtain for those k’s,

0 ≤ (1/2)(xk − x∗)T∇xxL(x
∗, λ∗, µ∗)(xk − x∗) + o(∥xk − x∗∥22).

Dividing by t2k and defining dk := (xk − x∗)/tk, we obtain

0 ≤ (1/2)(dk)T∇xxL(x
∗, λ∗, µ∗)dk +

o(∥xk − x∗∥2)
∥xk − x∗∥2

∥dk∥22.

Using dk → d as k → ∞ and taking limits as k → ∞, we obtain

0 ≤ (1/2)dT∇xxL(x
∗, λ∗, µ∗)d.

4.3 Second-order sufficient optimality conditions

We provide second-order conditions, which assert local optimality of KKT points.

Theorem 4.13. Let f , g, and h be twice continuously differentiable, and let (x∗, λ∗, µ∗)
be a KKT triple of (4.1). If

dT∇2
xL(x

∗, λ∗, µ∗)d > 0 for all d ∈ T+(g, h, x
∗, λ∗) \ {0},

then x∗ is a strict local solution to (4.1).

The second-order sufficient optimality conditions provided in Theorem 4.13 may be
used to show that a KKT point is a local solution. However, they do not assert global
optimality.
Our approach is as before. We first establish second-order sufficient optimality condi-

tions for unconstrained problems.

Proposition 4.14. Let f : Rn → R be twice continuously differentiable. If x∗ ∈ Rn,
∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ is a strict local minimizer of f .

Proposition 4.14 does not assert global optimality. Moreover if the second-order suf-
ficient optimality conditions (see Proposition 4.14) are satisfied at x∗, then x∗ may not
be a global minimizer.
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x

y

f(x)

Figure 4.6: The graph of f(x) := x4+x3−10x2. The function f has two local minmizers
and both satisfy the second-order sufficient optimality conditions. The local
minmizer on the positive part of the horizontal axis is not a global minimzer.

Proof of Proposition 4.14. Suppose that x∗ is not a strict local minimizer of f . Then
there exists a sequence (xk) with xk ̸= x∗, xk → x∗ as k → ∞, and f(xk) ≤ f(x∗). We
define

dk :=
xk − x∗

∥xk − x∗∥2
.

We have ∥dk∥2 = 1. Therefore, the sequence (dk) has an accumulation point d with
∥d∥2 = 1. We may assume that dk → d as k → ∞. Using a second-order Taylor’s
expansion, we obtain

f(xk) = f(x∗) +∇f(x∗)T (xk − x∗) + (1/2)(xk − x∗)∇2f(x∗)(xk − x∗) + o(∥xk − x∗∥22).

Using f(xk) ≤ f(x∗) and ∇f(x∗), we obtain

0 ≥ (1/2)(xk − x∗)∇2f(x∗)(xk − x∗) + o(∥xk − x∗∥22).

Dividing by ∥xk − x∗∥22, using the definition of dk and dk → d as k → ∞, we obtain
dT∇2f(x∗)d ≤ 0. Since d ̸= 0, this contradicts our assumption that ∇2f(x∗) is positive
definite.

Proof of Theorem 4.13. We use ideas from the proof of Proposition 4.14. Suppose that
x∗ is not a strict local solution to (4.1). Then there exists a sequence (xk) with xk

feasible for (4.1), xk ̸= x∗, xk → x∗ as k → ∞, and f(xk) ≤ f(x∗). We define

dk :=
xk − x∗

∥xk − x∗∥2
.

We have ∥dk∥2 = 1. Therefore, the sequence (dk) has an accumulation point d with
∥d∥2 = 1. We may assume that dk → d as k → ∞.
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Our first goal is to show that d ∈ T+(g, h, x
∗, λ∗). We have

0 ≥ f(xk)− f(x∗)

∥xk − x∗∥2
= ∇f(xk)Tdk + o(∥xk − x∗∥2)

∥xk − x∗∥2
→ ∇f(x∗)Td as k → ∞.

Moreover, for i = 1, . . . , p,

0 =
hi(x

k)− hi(x
∗)

∥xk − x∗∥2
= ∇hi(xk)Tdk +

o(∥xk − x∗∥2)
∥xk − x∗∥2

→ ∇hi(x∗)Td as k → ∞.

and for all i ∈ A(x∗),

0 ≥ gi(x
k)− gi(x

∗)

∥xk − x∗∥2
= ∇gi(xk)Tdk +

o(∥xk − x∗∥2)
∥xk − x∗∥2

→ ∇gi(x∗)Td as k → ∞.

We conclude that ∇f(x∗)Td ≤ 0, ∇hi(x∗)Td = 0 for i = 1, . . . , p, and ∇gi(x∗)Td ≤ 0 for
i ∈ A(x∗). We further have

0 = ∇xL(x
∗, λ∗, µ∗)Td = ∇f(x∗)Td+

∑
i∈A(x∗)

λ∗i∇gi(x∗)Td+
p∑
i=1

µ∗i∇hi(x∗)Td

=
∑

i∈A(x∗)

λ∗i∇gi(x∗)Td ≤ 0.

We obtain ∇gi(x∗)Td = 0 for all i ∈ A(x∗) with λ∗i > 0. Hence d ∈ T+(g, h, x
∗, λ∗).

Using λ∗ ≥ 0 and g(xk) ≤ 0, we obtain

L(xk, λ∗, µ∗) = f(xk) +
∑

i∈A(x∗)

λ∗i gi(x
k) ≤ f(xk) ≤ f(x∗) = L(x∗, λ∗, µ∗).

Combined with ∇xL(x
∗, λ∗, µ∗) = 0, the definition of dk, and a second-order Taylor’s

expansion, we obtain

0 ≥ L(xk, λ∗, µ∗)− L(x∗, λ∗, µ∗)

∥xk − x∗∥22
=

1

2
(dk)T∇2

xL(x
∗, λ∗, µ∗)dk +

o(∥xk − x∗∥22)
∥xk − x∗∥22

.

Taking limits as k → ∞, we obtain dT∇2
xL(x

∗, λ∗, µ∗)d ≤ 0. Since d ∈ T+(g, h, x
∗, λ∗),

we have obtained a contradiction to a hypothesis.
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4.4 Exercises

Exercise 4.1.
Consider the inequality constrained problem depicted in Figure 4.7. Is x∗ a KKT point?

∇f(x∗)

∇g1(x∗)

∇g2(x∗)

x∗

g1(x) = 0

g2(x) = 0

Figure 4.7: The gray region is the feasible set.

Exercise 4.2.
We consider

min
x∈R2

f(x) s.t. h(x) = 0, (P2)

where f : R2 → R and h : R2 → R are defined by f(x) := −x41x2 and h(x) := −(x1 +
2)2 + x2.
Define x̄ := (−2, 0) ∈ R2 and µ̄ := 16.

1. Show that (x̄, µ̄) is a KKT tuple of problem (P2).

2. Show that x̄ is a regular point of (P2)

3. Show that T+(h, x̄, µ̄) = { d ∈ R2 : d1 ∈ R, d2 = 0 }.

4. Define d := (1, 0). Show that dT∇xxL(x̄, µ̄)d = −32, where L is the Lagrangian
function corresponding to problem (P2).

5. Show that x̄ is not a local solution to problem (P2).

Exercise 4.3.
We consider

min
x∈R3

f(x) s.t. g1(x) ≤ 0, g2(x) ≤ 0, h(x) = 0, (P3)
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where f(x) := x1 + x2 − 2x3, g1(x) := (1/2)x21 − x2, g2(x) := exp(x1 − 1) − x1, and
h(x) := x23 − x1 + 3/4 = 0.

We define x̄ := (1, 1/2, 1/2) ∈ R3, λ̄ := (1, 0) ∈ R2, and µ̄ := 2.

1. Show that (x̄, λ̄, µ̄) is a KKT triple of (P3).

2. Prove that T+(g, h, x̄, λ̄) = { (t, t, t) : t ∈ R }.

3. Show that

∇xxL(x̄, λ̄, µ̄) =

1 0
4

 .
4. Show that x̄ is a local solution to (P3).

Exercise 4.4.
We consider the optimization problem

min
x∈R2

f(x) s.t. g1(x) ≤ 0, g2(x) ≤ 0, g3(x) ≤ 0, (P4)

where f : R2 → R is defined by f(x) := x31x2 and g : R2 → R, i = 1, 2, 3 are given by

g1(x) := x21 + x22 − 4, g2(x) := −(x1 + 2)2 + x2, g3(x) := x1 − exp(−x2).

We define x̄ := (−2, 0) ∈ R2 and λ̄ := (0, 8, 0) ∈ R3

1. Show that x̄ is a KKT point of problem (P4).

2. Show that x̄ is a regular point of (P4).

3. Show that x̄ is not a local solution of problem (P4).

Exercise 4.5 (Uniqueness of Lagrange multipliers under regularity).
We consider

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m hj(x) = 0, j = 1, . . . , p, (P5)

where f : Rn → R, gi : Rn → R, i = 1, . . . ,m, and hj : Rn → R, j = 1, . . . , p, are
continuously differentiable.
Let (x̄, λ̄, µ̄) and (x̄, λ̂, µ̂) be KKT triples of (P5). Suppose that x̄ is regular. Show

that (λ̄, µ̄) = (λ̂, µ̂).
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Exercise 4.6 (KKT conditions for the Celis–Dennis–Tapia problem).
We consider

min
x∈Rn

xTHx+ 2bTx s.t. ∥x∥22 −∆2 ≤ 0, ∥ATx+ c∥22 − ξ2 ≤ 0, (P6)

where ∆ > 0, ξ ≥ 0, H ∈ Rn×n is symmetric, A ∈ Rn×m, b ∈ Rn, and c ∈ Rm.
Derive the KKT conditions for (P6).
(You only need to state the KKT conditions for (P6) and do not need to compute its

KKT points. The KKT conditions for (P6) generally lack closed-form solutions. As a
consequence, the computation of KKT points requires numerical computations.)

Exercise 4.7.
We consider the inequality constrained optimization problem

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m. (P7)

Let x∗ be a local solution to (P7) and let f and gi, i = 1, . . . ,m, be continuously differ-
entiable on Rn. Suppose that the inequality constraints gi, i = 1, . . . ,m, are concave.

1. Show that x∗ is a local solution to the linearized optimization problem

min
x∈Rn

f(x∗) +∇f(x∗)T (x− x∗) s.t. gi(x
∗) +∇gi(x∗)T (x− x∗) ≤ 0, i = 1, . . . ,m.

2. Is x∗ a KKT point of (P7)?

Exercise 4.8 (Second-order sufficient optimality conditions, quadratic growth condition,
and strong metric subregularity for unconstrained optimization).
Let U ⊂ Rn be nonempty and open, let f : U → R be twice continuously differentiable,
and let x∗ ∈ U .

1. Show that if there exists α > 0 such that

f(x)− f(x∗) ≥ (α/2)∥x− x∗∥22 for all x ∈ U, (QGC)

then x∗ is a strict local minimizer of f over U , ∇f(x∗) = 0, and dT∇2f(x∗)d ≥
α∥d∥22 for all d ∈ Rn.

2. Show that if there exists α > 0 such that

∇f(x∗) = 0 and dT∇2f(x∗)d ≥ α∥d∥22 for all d ∈ Rn, (SOSC)

then there exists ε > 0 such that

f(x)− f(x∗) ≥ (α/4)∥x− x∗∥22 for all x ∈ U ∩Bε(x∗).
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3. Show that if (SOSC) holds for some α > 0, then there exists ε > 0 such that

(α/2)∥x− x∗∥2 ≤ ∥∇f(x)∥2 for all x ∈ U ∩Bε(x∗). (4.10)

Exercise 4.9 (Second-Order Sufficient Condition and Quadratic Growth).
Let f : Rn → R, g : Rn → Rm and h : Rn → Rp be twice continuously differentiable. We
consider

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0. (P8)

Let x̄ be a KKT point of (P8) with multipliers λ̄ ∈ Rm and µ̄ ∈ Rp. We denote by X
the feasible set of (P8). Suppose that the second-order sufficient conditions stated in
Theorem 4.13 hold true. Show that there exist α > 0 and δ > 0 such that

f(x)− f(x̄) ≥ α∥x− x̄∥22 for all x ∈ X with ∥x− x̄∥2 < δ.

Hint: Adapt the proof of Theorem 4.13.

Exercise 4.10 (LICQ and Slack Variables).
Let p = 0 and let x̄ be a feasible for (P8). Suppose that the LICQ holds at x̄. We
consider

min
(x,s)∈Rn×Rm

f(x) s.t. g(x) + s = 0, −s ≤ 0. (P9)

We define s̄ := −g(x̄).

1. Show that (x̄, s̄) is feasible for (P9).

2. Prove that the LICQ holds at (x̄, s̄) for (P9).

Exercise 4.11 (Fritz John Conditions).
Consider the optimization problem:

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p,

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp are continuously differentiable.

1. Show without using the KKT conditions that if x∗ is a local minimizer of the
problem, then there exist scalars λ0 ≥ 0, λi ≥ 0 for i = 1, . . . ,m, and νj ∈ R for
j = 1, . . . , p, not all zero, such that

λ0∇f(x∗)+
m∑
i=1

λi∇gi(x∗)+
p∑
j=1

νj∇hj(x∗) = 0, λT g(x∗) = 0, g(x∗) ≤ 0, h(x∗) = 0.

These conditions are known as (Fritz) John conditions.
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2. How do these conditions differ from the KKT conditions?

3. If you use the KKT conditions to show the John conditions, can you provide a
concise proof?

Exercise 4.12 (A minimax optimization problem).
Let gi : Rn → R (i = 1, . . . ,m) be continuously differentiable. We consider

min
(x,t)∈Rn×R

t s.t. gi(x)− t ≤ 0, i = 1, . . . ,m. (P10)

Let ((x∗, t∗), λ∗) be a KKT tuple of (P10).

1. State the KKT conditions for (P10) at ((x
∗, t∗), λ∗) explicitly.

2. Show that t∗ = max1≤i≤m gi(x
∗) using the KKT conditions.

Hint: We have
∑m

i=1 λ
∗
i = 1 and λ∗i

(
gi(x

∗)− t∗
)
= 0, i = 1, . . . ,m.

3. Show that (P10) is equivalent to an unconstrained optimization problem.
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We consider the unconstrained minimization problem

min
x∈Rn

f(x), (5.1)

where f : Rn → R is continuously differentiable.
We study iterative optimization methods that compute (approximate) critical points

of (5.1). A point x̄ ∈ Rn is called a critical point or a stationary point of f if ∇f(x̄) = 0.
A local solution to (5.1) is a critical point of (5.1) (see Proposition 4.6).

5.1 Gradient descent method

The section is devoted to the oldest and most widely known method for unconstrained
minimization problems, the gradient descent (method).
Let us provide a “derivation” of the gradient descent method. A vector s is called a

descent direction of f at x ∈ Rn if ∇f(x)T s < 0. Suppose that x ∈ Rn is not a critical
point of f , that is, ∇f(x) ̸= 0. Then g := −∇f(x) is a descent direction of f at x:

lim
γ→0

f(x− γ∇f(x))− f(x)

γ
= −∥∇f(x)∥22 < 0.

Moreover, the descent direction g = −∇f(x) is the best among the descent directions h
with the same norm as g: For each h ∈ Rn with ∥h∥2 = ∥g∥2, we have

lim
γ→0+

f(x− γ∇f(x))− f(x)

γ
= ∇f(x)Th

and using the Cauchy–Schwartz inequality, we obtain

∇f(x)Th ≥ −∥h∥2∥∇f(x)∥2 = −∥∇f(x)∥22

and equality holds if and only if h = g = −∇f(x). In particular, if x is not a stationary
point of f , then the points x− γ∇f(x) decrease f for all sufficiently small γ > 0.

Algorithm 5.1 (Generic gradient descent method).

0. Choose initial point/starting point x0 ∈ Rn.

For k = 0, 1, 2, . . .
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1. Compute a step size γk ≥ 0 and define xk+1 = xk − γk∇f(xk).

The key issue in gradient descent is the choice of the step size γk. As a basic require-
ment, we could impose is the following: Compute a step size γk ≥ 0 that satisfies

∇f(xk) ̸= 0 implies f(xk+1) < f(xk). (5.2)

In other words, a step size should ensure that the objective function value decreases as
long as the iterates are not critical points.
The gradient step sk = −∇f(xk) is the solution to

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)∥s∥22.

5.1.1 Step Size Selection

We discuss standard step size rules.

• Constant step sizes: The choice γk = γ > 0 for all iterations k ∈ N is made.
Generally, this step size rule may violate (5.2). Under certain conditions on f and
on γ, we can ensure (5.2). See Exercise 5.1. Exercise 5.12 shows that improper
choices of γ can prevent the gradient method from converging to stationary points.

• Diminishing step sizes: Choose γk > 0 with γk → 0 as k → ∞ and

∞∑
k=1

γk = +∞.

Sometimes the additional requirement

∞∑
k=1

γ2k < +∞

is imposed.

Exercise 5.16 shows that the use of summable, positive step sizes, that is, γk > 0
and

∑∞
k=1 γk < +∞, may prevent the gradient method from computing approxi-

mate stationary points. We provide a simple example illustrating this point.

Example 5.2. Let us apply the gradient method to f(x) := (1/2)x2 which has the
unique minimizer x∗ = 0. The derivative f ′ is Lipschitz continuous with Lipschitz
constant 1. We choose γk := 1/[(k + 1)2π2]. We have

∑∞
k=1 γk < +∞. Let

xk+1 = xk − γkx
k with x0 := 1. Using Exercise 5.2 (or Lemma 5.5), we can show

that f(xk+1) < f(xk) for all k ∈ N. Moreover

xk+1 = (1− γk)x
k =

(
1− 1

(k + 1)2π2

)
xk =

k∏
j=0

(
1− 1

(j + 1)2π2

)
→ sin(1) as k → ∞.
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In particular, (xk) does not converge to 0 as k → ∞. This example shows that
the use of summable, positive step sizes may prevent the gradient method from
generating sequences converging to stationary points. Moreover even if the gradient
method generates a sequence (xk) with f(xk+1) < f(xk) for all k ∈ N, we can have
∥∇f(xk)∥2 ≥ c for all k ∈ N and some c > 0.

• Minimization rule: The step size γk is computed according to

γk = argminγ≥0 f(x
k − γ∇f(xk)).

The step size γk is well-defined if γ → f(xk−γ∇f(xk)) is bounded below on [0,∞).
For general f , it may be difficult to compute γk according to the minimization rule.

• Armijo rule: Compute γk > 0 such that

f(xk − γk∇f(xk)) ≤ f(xk)− εγk∥∇f(xk)∥22,
f(xk − ηγk∇f(xk)) ≥ f(xk)− εηγk∥∇f(xk)∥22,

(5.3)

where ε ∈ (0, 1) (e.g. ε = 1/5) and η > 1 (e.g. η = 2 or η = 10) are fixed parameters.
As opposed to the minimization rule, the Armijo rule is implementable if f is
continuously differentiable and bounded from below. The first condition in (5.3)
ensures decrease of f provided that ∇f(xk) ̸= 0. Second condition ensures γk is
“not too small”: if we multiply γk by η, then first condition is violated. The step
sizes computed via the Armijo rule satisfy (5.2).

The Armijo rule has the following geometric interpretation. Let us fix xk ∈ Rn
with ∇f(xk) ̸= 0. We consider the function

ϕ(γ) := f(xk − γ∇f(xk))− f(xk).

We have ϕ′(0) = −∇f(xk)T∇f(xk) and ϕ(0) = 0. Hence the conditions in (5.3)
can be expressed as

ϕ(γk) ≤ εγkϕ
′(0) and ϕ(ηγk) ≥ εηγkϕ

′(0). (5.4)

Figure 5.1 provides a graphical illustration.
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γ−1 1 2 3 4 5 6 7

−2

−1

1

ϕ(γ)εγϕ′(0)

εηγϕ′(0)

Figure 5.1: We define ϕ(γ) := f(xk − γ∇f(xk))− f(xk). We have ϕ(0) = 0. The figure
depicts the graph of ϕ, εγϕ′(0), and εηγϕ′(0) as a function of γ ≥ 0. Here
ϕ′(0) = −1, ε = 1/5 and η = 2. If γk = 5/2, then the conditions in (5.4)
hold true. If γk = 1, then the second condition in (5.4) is violated.

Let f be bounded from below, that is, f(x) ≥ f∗ for all x ∈ Rn and for some
f∗ ∈ R. Let us show that for each xk with ∇f(xk) ̸= 0, there exists a step size
γk > 0 fulfilling (5.3). Let us define

ϕ(γ) := f(xk − γ∇f(xk))− f(xk).

We have

ϕ′(0) = −∥∇f(xk)∥22 and ϕ(0) = 0.

So the conditions in (5.3) can be written as

ϕ(γk) ≤ ϕ(0) + εγkϕ
′(0), and ϕ(ηγk) ≥ ϕ(0) + εηγkϕ

′(0).

We show that for each sufficiently small γk > 0 the first condition hold true. Since
∇f(xk) ̸= 0, we have ϕ′(0) < 0. Moreover,

lim
γ→+0

ϕ(γ)− ϕ(0)

γ
= ϕ′(0).

Combined with ε ∈ (0, 1), we find that for all sufficiently small γ > 0,

ϕ(γ)− ϕ(0)

γ
≤ εϕ′(0).

Multiplying by γ > 0, we obtain ϕ(γ)− ϕ(0) ≤ γεϕ′(0).

We must yet show that ϕ(γ) − ϕ(0) ≤ γεϕ′(0) cannot be valid for all sufficiently
large values of γ > 0. Indeed, we have γεϕ′(0) → −∞ as γ → ∞ because ϕ′(0) < 0
and ε > 0. However, the function ϕ(γ) − ϕ(0) is bounded from below, as f is
bounded from below.
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• Goldstein test. Let us define

ϕ(γ) := f(xk − γ∇f(xk))

and let ε ∈ (0, 1/2). A step size γk > 0 satisfies the Goldstein test if

ϕ(0) + (1− ε)γϕ′(0) ≤ ϕ(γ) ≤ ϕ(0) + εγϕ′(0).

The minimization rule and the Armijo rule are line search methods. Line search
methods are aimed at approximately minimizing

γ 7→ f(xk + γsk)

over γ ≥ 0 (or more generally a closed interval). In our case, we have sk = −∇f(xk).
Further line search methods include the Goldstein rule and the Wolfe line search, for
example. Line search schemes that successfully reduce γ until a termination criterion is
reached are called backtracking line search methods.
The Armijo rule as introduced in (5.3) is a special case of the following conditions

applied to the gradient step sk = −∇f(xk). For a step sk ∈ Rn, the Armijo rule is:
Compute γk > 0 such that

f(xk + γks
k) ≤ f(xk) + εγk∇f(xk)T sk,

f(xk + ηγks
k) ≥ f(xk) + εηγk∇f(xk)T sk,

(5.5)

where ε ∈ (0, 1) and η > 1 are fixed parameters. Whenever ∇f(xk)T sk < 0, a step
size γk > 0 satisfying the conditions in (5.5) can be computed. The verification of this
statement is similar to that presented above for the case sk = −∇f(xk).
A step satisfying the Armijo conditions (5.5) can be computed using backtracking line

search, provided that ∇f(xk)T sk < 0:

Compute the largest number γk ∈ {1, (1/η), (1/η)2, . . .} such that

f(xk + γks
k) ≤ f(xk) + εγk∇f(xk)T sk. (5.6)

This particular scheme to satisfy the Armijo conditions presupposes that γk = 1 might
be a “good” step size. Figure 5.2 provides a graphical illustration.

γ

f(xk + γsk)− f(xk)εγ∇f(xk)T sk

γ∇f(xk)T sk

Figure 5.2: Backtracking line search by the Armijo rule (5.6). The thick line corresponds
to the interval of step sizes γk fulfilling the condition in (5.6).
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5.1.2 Global convergence

We demonstrate the (asymptotic) convergence of the gradient descent, Algorithm 5.1,
if the Armijo step size rule is used. More precisely, we show that each accumulation
point of the sequence generated by the gradient descent is a critical point of f . This
convergence result does not imply that the accumulation point is a global or even local
solution to (5.1).

Theorem 5.3 (Global convergence of gradient descent with Armijo rule). Let f : Rn →
R be continuously differentiable and bounded from below. We consider Algorithm 5.1
with Armijo step size rule. Then the algorithm generates a sequence (xk) such that

1. for all k ∈ N, f(xk+1) < f(xk) with ∇f(xk) ̸= 0, and f(xk+1) = f(xk) otherwise,
and

2. each accumulation point of (xk) is a stationary point of f .

Proof. We show that the algorithm computes the iterates x1, x2, . . .. In other words,
we show that the method is well-defined. We establish this assertion using induction.
If ∇f(x0) = 0, then any γ1 > 0 satisfies (5.3) and we have x1 = x0. If ∇f(x0) ̸= 0,
then the computations performed in Section 5.1.1 show that a step size γ1 > 0 can be
computed such that the conditions in (5.3) hold true. Using (5.3), we obtain

f(x1)− f(x0) ≤ −εγ1∥∇f(x0)∥22 < 0.

Now suppose that the algorithm has computed xk. Using arguments similar to those
above, we can show that the algorithm computes the next iterate xk+1. Hence, we have
shown that the algorithm generates a sequence (xk) and that f(xk+1) < f(xk) for all
k ∈ N with ∇f(xk) ̸= 0.
Now let x̄ be an accumulation point of (xk) and let (xkℓ) be a subsequence of (xk)

converging to x̄ as ℓ→ ∞.
Since the sequence (f(xk)) is nonincreasing and f is bounded from below, we find that

f(xk) → f(x̄) as k → ∞ (This follows from the “monotone convergence theorem”1 and
the continuity of f .) In particular, we have f(xk)−f(xk+1) → 0 as k → ∞. Using (5.3),
we find that

εγk∥∇f(xk)∥22 ≤ f(xk)− f(xk+1).

Combined with f(xk)− f(xk+1) → 0 as k → ∞, we find that

γk∥∇f(xk)∥22 → 0 as k → ∞. (5.7)

1“Monotone convergence theorem:” If a sequence of real numbers is nonincreasing and bounded from
below by a finite number, then it converges. In other words, if ā ∈ R, (ak) ⊂ R is a sequence, and
ak ≥ ā for all k ∈ N, then limk→∞ ak exists.
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To establish the theorem, we must show that ∇f(x̄) = 0. Suppose that ∇f(x̄) ̸= 0.
Combined with the continuity of ∇f and xkℓ → x̄ as ℓ → ∞, we find that for all
sufficiently large ℓ ∈ N,

∥∇f(xkℓ)∥2 ≥ (1/2)∥∇f(x̄)∥ > 0.

Using (5.7), we have γkℓ → 0 as ℓ → ∞. Let us define tℓ := ηγkℓ and sk := −∇f(xk).
The sequence (tℓ) converges to zero as ℓ→ ∞.
Using (5.3), we obtain for all ℓ,

f(xkℓ + ηγkℓs
kℓ)− f(xkℓ) ≥ −εηγkℓ∥∇f(x

kℓ)∥22. (5.8)

Dividing (5.8) by ηγkℓ , using tℓ = ηγkℓ , and using the continuity of ∇f , we obtain

lim inf
ℓ→∞

f(xkℓ + tℓs
kℓ)− f(xkℓ)

tℓ
≥ −ε∥∇f(x̄)∥22.

Next we show that

lim
ℓ→∞

f(xkℓ + tℓs
kℓ)− f(xkℓ)

tℓ
= −∥∇f(x̄)∥22.

The mean value theorem ensures the existence of numbers τℓ ∈ (0, tℓ) such that

f(xkℓ + tℓs
kℓ)− f(xkℓ)

tℓ
=
tℓ∇f(xkℓ + τℓs

kℓ)T skℓ

tℓ
= ∇f(xkℓ + τℓs

kℓ)T skℓ .

Combined with the continuity of ∇f and skℓ = −∇f(xkℓ) → −∇f(x̄) as k → ∞, we
obtain

lim
ℓ→∞

f(xkℓ + tℓs
kℓ)− f(xkℓ)

tℓ
= −∥∇f(x̄)∥22.

Hence −∥∇f(x̄)∥22 ≥ −ε∥∇f(x̄)∥22, yielding 0 ≥ (1 − ε)∥∇f(x̄)∥22. Since ε ∈ (0, 1), we
obtain ∇f(x̄) = 0.

The assertions of Theorem 5.3 remain valid if instead of the Armijo rule the mini-
mization rule is used; see Exercise 5.6.
Theorem 5.3 provides conditions sufficient for accumulation points of the sequence (xk)

generated by the gradient descent be stationary points of f . When does the sequence
have an accumulation point? If the level set

{x ∈ Rn : f(x) ≤ f(x0)}

is bounded, then the sequence (xk) has at least one accumulation point because Theo-
rem 5.3 ensures that the iterates xk belong to this level set.
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Example 5.4. The gradient method as applied to a nonconvex function may not gen-
erate a sequence converging to a local minimizer of it. For example, let us consider
f(x) = x4 + x3 + 1/4. We have f ′(x) = 4x3 + 3x2 = x2(4x + 3) = 0 if and only if
x = 0 or x = −3/4. The point x∗ = −3/4 is the global minimizer of f , while x̄ = 0 is a
saddle point (a critical point that is neither a local minimizer nor local maximizer). If
we initialize the gradient descent with x0 = 0, then we have 0 = x0 = x1 = x2 = · · · . In
particular, xk does not converge to x∗ = −3/4. Figure 5.3 provides an illustration.

x

y

x∗ x̄

Figure 5.3: Graph of the function f(x) = x4 + x3 + 1/4. The point x∗ is the global
minimizer of f , and x̄ is a saddle point of f (a critical point that is neither
a local minimizer nor local maximizer).

5.1.3 Convergence rates for nonconvex objectives

Theorem 5.3 provides an asymptotic convergence result. We now demonstrate a nonasymp-
totic convergence statement.

We say that the differentiable function f : Rn → R has a Lipschitz continuous gradient
if there exists a constant L ≥ 0 such that

∥∇f(y)−∇f(x)∥2 ≤ L∥y − x∥2 for all x, y ∈ Rn.

In this case, L is referred to as the Lipschitz constant of ∇f .
The nonasymptotic convergence rates are based on the following lemma.

Lemma 5.5 (Descent lemma). Let f : Rn → R be differentiable, and let ∇f be Lipschitz
continuous with Lipschitz constant L > 0. Then

f(y) ≤ f(x) +∇f(x)T (y − x) + (L/2)∥y − x∥22 for all x, y ∈ Rn. (5.9)

Proof. Fix x, y ∈ Rn. We have

f(y)− f(x) =

∫ 1

0
∇f(x+ τ(y − x))T (y − x)dτ.
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Combined with the Lipschitz continuity, we obtain

f(y)− f(x)−∇f(x)T (y − x) =

∫ 1

0

[
∇f(x+ τ(y − x))T (y − x)−∇f(x)T (y − x)

]
dτ

≤
∫ 1

0
∥∇f(x+ τ(y − x))−∇f(x)∥2∥y − x∥2dτ

≤ ∥y − x∥22
∫ 1

0
Lτdτ

= (L/2)∥y − x∥22.

Let us minimize the right-hand side in (5.9) over y ∈ Rn. The right-hand side is a
strongly convex quadratic function. For its minimizer y∗, we obtain

∇f(x) + L(y∗ − x) = 0,

yielding y∗ = x− (1/L)∇f(x). Hence

min
y∈Rn

{
f(x) +∇f(x)T (y − x) + (L/2)∥y − x∥22

}
= f(x)− 1

2L
∥∇f(x)∥22

and

f(x− (1/L)∇f(x)) ≤ f(x)− 1

2L
∥∇f(x)∥22.

We state global convergence rates for the gradient descent method, Algorithm 5.1.

Theorem 5.6. Let f : Rn → R be differentiable and its gradient be Lipschitz continuous
with Lipschitz constant L. Let f∗ ∈ R be the optimal value of (5.1). Then for all K ∈ N:

1. The sequence (xk) generated by the gradient descent method with minimization rule
satisfies

min
0≤k<K

∥∇f(xk)∥22 ≤
2L

K
· (f(x0)− f∗).

2. The sequence (xk) generated by the gradient descent method with Armijo rule sat-
isfies

min
0≤k<K

∥∇f(xk)∥22 ≤
Lη

2ε(1− ε)K
· (f(x0)− f∗).

Proof. 1. The minimization rule computes γk ≥ 0 as a solution to minγ≥0 f(x
k −

γ∇f(xk)). Choosing y = xk− γ∇f(xk) and x = xk in Lemma 5.5, and minimizing both
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sides over γ ≥ 0, we obtain

f(xk+1) = min
γ≥0

f(xk − γ∇f(xk))

≤ f(xk) + min
γ≥0

{−γ∥∇f(xk)∥22 + (L/2)γ2∥∇f(xk)∥22}

= f(xk)− 1

2L
∥∇f(xk)∥22.

Rearranging terms, we obtain

f(xk)− f(xk+1) ≥ 1

2L
∥∇f(xk)∥22.

Summing over k = 0, . . . ,K, we have

1

2L

K∑
k=0

∥∇f(xk)∥22 ≤
K∑
k=0

[
f(xk)− f(xk+1)

]
.

We deduce

K∑
k=0

[
f(xk)− f(xk+1)

]
= f(x0)− f(x1) + f(x1)− f(x2) + · · · = f(x0)− f(xK+1)

Putting together the pieces, we obtain

1

2L

K∑
k=0

∥∇f(xk)∥22 ≤ f(x0)− f(xK+1).

The term on the left-hand side is greater than or equal to (K+1)/(2L)min0≤k<K+1 ∥∇f(xk)∥22
and the term on the right-hand side is less than or equal to f(x0)− f∗. We obtain the
assertion.
2. We apply Lemma 5.5 to y = xk − γkη∇f(xk) and x = xk to obtain

f(xk − γkη∇f(xk)) ≤ f(xk)− γkη∥∇f(xk)∥22 + (L/2)η2γ2k∥∇f(xk)∥22.

Using the second condition in the Armijo rule (5.3),

f(xk − γkη∇f(xk)) ≥ f(xk)− εηγk∥∇f(xk)∥22.

Combining these inequalities, we get

(1− ε)ηγk∥∇f(xk)∥22 ≤ (L/2)η2γ2k∥∇f(xk)∥22.

If ∇f(xk) ̸= 0, then γk > 0 and

γk ≥
2(1− ε)

ηL
. (5.10)
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Using the first condition in the Armijo rule (5.3), we have

f(xk)− f(xk+1) ≥ εγk∥∇f(xk)∥22.

Combined with (5.10),

f(xk)− f(xk+1) ≥ 2ε(1− ε)

ηL
∥∇f(xk)∥22.

Now, we can proceed as in part one.

5.1.4 Convergence rates for convex objectives

Theorem 5.6 provides convergence rates for the decay of min0≤k≤K ∥∇f(xk)∥2 when (xk)
is generated by a gradient method with either the minimization or the Armijo step size
rule. If we additionally assume that f is convex, then we can establish convergence rates
for f(xk)− f∗, where f∗ is the optimal value of (5.1).

Theorem 5.7. We consider the gradient descent method with Armijo line search and
parameter ε ∈ (1/2, 1). Let f be convex and differentiable. Let x∗ be a minimizer of
f . Suppose that ∇f is Lipschitz continuous with Lipschitz constant L. Then for every
K ∈ N, we have

f(xK)− f(x∗) ≤ ηL∥x0 − x∗∥22
4(1− ε)K

.

Proof. Let us define rk = ∥xk − x∗∥2. We have

r2k+1 = ∥xk+1 − x∗∥22
= r2k − 2γk∇f(xk)T (xk − x∗) + γ2k∥∇f(xk)∥22.

(5.11)

Since f is convex, the gradient inequality yields

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn.

It follows that

∇f(xk)T (xk − x∗) ≥ f(xk)− f(x∗).

Let us define δk = f(xk)− f(x∗) ≥ 0. Using (5.11), we obtain

r2k+1 ≤ r2k − γk
(
2δk − γk∥∇f(xk)∥22

)
.

According to (5.3), we have

γk∥∇f(xk)∥22 ≤ (1/ε)
[
f(xk)− f(xk+1)

]
= (1/ε)

[
δk − δk+1

]
.
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Since γk > 0, we get

r2k+1 ≤ r2k − γk
[
(2− 1/ε)δk + (1/ε)δk+1

]
.

Since ε > 1/2 and δk ≥ 0, the quantify in the brackets on the right-hand side is nonneg-
ative. We know from (5.10)

γk ≥ γ̄ :=
2(1− ε)

ηL
.

We obtain

r2k+1 ≤ r2k − γ̄
[
(2− 1/ε)δk + (1/ε)δk+1

]
.

Rearranging terms yields

γ̄
[
(2− 1/ε)δk + (1/ε)δk+1

]
≤ r2k − r2k+1.

Theorem 5.3 ensures that δk ≥ δk+1, as f(x
k+1) ≤ f(xk). Therefore

2γ̄δk+1 ≤ r2k − r2k+1.

Summing this inequality over k = 0, . . . ,K − 1, and using δK ≤ δk for k ≤ K, we have

2Kγ̄δK ≤ 2γ̄

K−1∑
k=0

δk ≤ r20 − r2K ≤ r20 = ∥x∗ − x0∥22.

Upon using the definition of γ̄, we obtain the assertion.

We now state a result on the performance of the gradient descent method with Armijo
line search applied to strongly convex functions. A function f is called strongly convex
with parameter µ > 0 if f(x)−(µ/2)∥x∥22 is a convex function. For example, if A ∈ Rn×n
is symmetric positive definite and b ∈ Rn, then f(x) = (1/2)xTAx − bTx is strongly
convex with parameter µ = λmin(A) (minimum eigenvalue of A) and ∇f is Lipschitz
continuous with Lipschitz constant L = λmax(A) (maximum eigenvalue).

Proposition 5.8. Let f be strongly convex with parameter µ > 0, and let f be differen-
tiable and its gradient be Lipschitz continuous with Lipschitz constant L > 0. If we apply
gradient descent with Armijo line search to f with ε ∈ (1/2, 1), and x∗ is the minimizer
of f , then

∥xk − x∗∥2 ≤ θk∥x0 − x∗∥2, where θ =

√
κf − (2− 1/ε)(1− ε)/η

κf + (1/ε− 1)/η
, (5.12)

where κf = L/µ is the condition number of f . Moreover,

f(xk)− f(x∗) ≤ θ2kκf
[
f(x0)− f(x∗)

]
.
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We state Proposition 5.8 without a proof. The scalar θ is contained in (0, 1), as
ε ∈ (1/2, 1) is assumed in Proposition 5.8. Moreover, if the condition number κf is
large, then θ is close to 1. The convergence rate in (5.12) is referred to as linear.

Why is the ratio L/µ called condition number? In numerical linear algebra, the
condition number of a symmetric positive definite matrix is the ratio of the maximum and
the minimum eigenvalue. Let µ > 0 and L > 0. If f is twice continuously differentiable,
then f is strongly convex with parameter µ and∇f is Lipschitz continuous with Lipschitz
constant L if and only if

µdTd ≤ dT∇2f(x)d ≤ LdTd for all x ∈ Rn, d ∈ Rn.

This is equivalent to µ ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ L for all x ∈ Rn. These
considerations provide a motivation for the terminology condition number.
A result similar to Proposition 5.8 is valid if the minimization rule is used.

Proposition 5.9. Let f be strongly convex with parameter µ > 0, and let f be differ-
entiable and its gradient be Lipschitz continuous with Lipschitz constant L > 0. If we
apply gradient descent with minimization rule to f , and x∗ is the minimizer of f , then

f(xk)− f(x∗) ≤
(
κf − 1

κf + 1

)2k[
f(x0)− f(x∗)

]
.

and

f(xk)− f(x∗) ≤
(
κf − 1

κf + 1

)2k[
f(xk−1)− f(x∗)

]
.

Here, κf = L/µ.

We state Proposition 5.9 without a proof. However, we consider an illustrative exam-
ple.

x0

x1
x∗

Figure 5.4: Some contour lines of the function f(x) = (1/2)x21 + (ρ/2)x22. Contour lines
of f are the set of points x ∈ R2 with f(x) = c for c ∈ R. The figure shows
iterates of the gradient method with minimization rule and x0 = (ρ, 1) with
ρ = 10.
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Example 5.10. We apply the gradient descent method with minimization rule to the
quadratic objective function on R2,

f(x) =
1

2

(
x21 + ρx22

)
,

where ρ ≥ 1. The condition number of f is κf = ρ/1. We choose x0 = (ρ, 1). It can be
shown that

xk1 = ρ

(
ρ− 1

ρ+ 1

)k
and xk2 = ρ

(
− ρ− 1

ρ+ 1

)k
and

f(xk) =

(
ρ− 1

ρ+ 1

)2k

f(x0).

For this simple example, the converge is linear and the error is reduced by a factor
|(ρ − 1)/(ρ + 1)|2 at each iteration. For ρ = 1, the exact solution is computed in one
iteration. If ρ ≫ 1, then the convergence is very slow. Moreover, the example shows
that the convergence rate in Proposition 5.9 cannot be improved. Figure 5.4 provides
an illustration.

5.1.5 Termination

We generally cannot expect that the gradient descent method computes an iterate xk

that is a stationary point of f . In implementations of gradient descent, we may terminate
gradient descent if one of the following conditions is satisfied:

∥∇f(xk)∥2 ≤ εatol or ∥∇f(xk)∥2 ≤ εatol + εrtol∥∇f(x0)∥2,

where εatol > 0 and εrtol ∈ (0, 1) are tolerances. For the latter termination criterion, we
may choose εatol = 0. Theorem 5.6 provides us with upper bounds on the number of
iterations until ∥∇f(xk)∥2 ≤ εatol is satisfied for εatol > 0.

5.2 Accelerated gradient descent method

Throughout the section, we consider

min
x∈X

f(x), (5.13)

where f : Rn → R is convex, and differentiable with L-Lipschitz continuous gradient.
Moreover X ⊂ Rn is nonempty, closed, and convex.
We discuss only a basic version of the accelerated gradient method (also known as

Nesterov’s (gradient) method). Comprehensive analyzes of accelerated gradient methods
and optimal first-order methods can be found in [14, section 2.2], [12, Chapter 3], and
the recent paper [20].

127



5 Optimization Methods for Unconstrained Optimization

Algorithm 5.11 (basic version of the accelerated gradient descent method).

0. Choose initial point/starting point x0 ∈ X. Define x0 := x0.

For k = 1, 2, . . .

1. Choose αk > 0 and compute xk = (1− αk)x
k−1 + αkx

k−1.

2. Choose βk > 0 and compute

xk = argminy∈X
{
αk∇f(xk)T y + (βk/2)∥y − xk−1∥22

}
.

3. Compute xk = (1− αk)x
k−1 + αkx

k.

We discuss the convergence rate the basic accelerated gradient descent method (see
Algorithm 5.11) as applied to smooth convex optimization.

Theorem 5.12. Let f : Rn → R be convex, and differentiable with L-Lipschitz continu-
ous gradient. Moreover X ⊂ Rn is nonempty, closed, and convex. Let x∗ be a solution
to (5.13). Let (xk, xk, xk) be generated by Algorithm 5.11 with αk := 2/(k + 1) and
βk := 4L/[k(k + 1)]. Then for all k ∈ N,

f(xk)− f(x∗) ≤ 2L

k(k + 1)
∥x0 − x∗∥22.

Proof. See Theorem 3.6 in [12].

5.3 Conjugate gradient method

The conjugate gradient (CG) method was originally designed to solve the quadratic,
strongly convex optimization problem

min
x∈Rn

f(x), where f(x) := (1/2)xTHx− bTx, (5.14)

where H ∈ Rn×n is symmetric positive definite and b ∈ Rn. The solution x∗ to (5.14) is
given by x∗ = H−1b.
Let us recall a few facts about gradient descent with minimization rule. When applying

gradient descent with minimization rule to the objective function in (5.14), then the first
iterate x1 is computed as x0 − γ0∇f(x0), where γ0 solves

γ0 = argminγ≥0 f(x
0 − γ0∇f(x0)).

Since f is quadratic and strongly convex and any vector x ∈ x0 + Lin(∇f(x0)) is of the
form x = x0 − γ∇f(x0) for some γ ∈ R, we may also write

x1 = argminx∈x0+Lin(∇f(x0)) f(x).
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Similarly, the kth iterate of the gradient descent using minimization rule is given by

xk = argminx∈xk−1+Lin(∇f(xk−1)) f(x).

The conjugate gradient method uses a different approach. Instead of computing xk

as a minimizer of f over the affine space xk−1 + Lin(∇f(xk−1)), it computes xk by
minimizing f over a certain linear subspace shifted by x0. These linear subspaces are
called Krylov subspaces.
Let us formalize the conjugate gradient method. Let x0 ∈ Rn be a starting point. We

associate with x0 the Krylov vectors

g0 := Hx0 − b, Hg0, H2g0, . . .

and the Krylov subspaces

L0 := {0}, Lk := Lin(g0, Hg0, H
2g0, . . . ,H

k−1g0), k = 1, 2, . . . .

Hence Lk is the linear span of the first k Krylov vectors. Since Hx∗ = b, we can write
g0 = H(x0 − x∗), Hg0 = H2(x0 − x∗), H2g0 = H3(x0 − x∗), . . ., Hk−1g0 = Hk(x0 − x∗).
We obtain

Lk = Lin(H(x0 − x∗), H2(x0 − x∗), . . . Hk(x0 − x∗)).

Moreover, we have Lk+1 = Lin(Lk, H
k+1(x0 − x∗)) and

L1 ⊂ L2 ⊂ L3 ⊂ · · · .

Let K be the first value of k such that the first k Krylov vectors are linearly independent.
Then the inclusion Lk ⊂ Lk+1 is strict when K < k− 1 and is an equality if K ≥ k− 1.
The classical CG method computes xk as

xk = argminx∈x0+Lk
f(x).

We terminate the CG method if ∇f(xk) = 0. Below we analyze properties of the iterates
xk as well as the subspaces Lk. These considerations will allow us to state an explicit
form of the CG method that is implementable.
We say that a vector g ∈ Rn is orthogonal to a linear subspace L if gTx = 0 for all

x ∈ L. The vectors d1, d2 are said to be orthogonal if dT1 d2 = 0. If d0, . . . , dk are vectors
in Rn and A is symmetric positive definite, then we say that they are A-conjugate if
dTj Adℓ = 0 for 0 ≤ j < ℓ ≤ k. The CG method generates H-conjugate vectors as we
show in Lemma 5.14.
Lemma 5.13 provides us with an equivalent representation of the Krylov subspaces

and shows that the gradients gk = ∇f(xk) are orthogonal to each other.

Lemma 5.13. If the CG method does not terminate at step k, then the gradients
g0, . . . , gk−1 of f at the points x0, . . . , xk−1 are nonzero and

Lk = Lin(g0, g1, . . . , gk−1).

Moreover, we have gTk gℓ = 0 for 0 ≤ ℓ ≤ k − 1 and gk is orthogonal to Lk.
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Proof. For k = 1, then ∇f(x0) = Hx0 − b ̸= 0 and we have L1 = Lin(g0). Since
x1 ∈ x0 + L1, we have x1 = x0 + µ∗g0 for some µ∗ ̸= 0. Since x1 = argminx∈x0+L1

f(x),
µ∗ minimizes ϕ(µ) = f(x0 + µg0). We obtain 0 = ϕ′(µ∗) = ∇f(x1)T g0 = gT1 g0 = 0.

Suppose that the assertion is true for some k. Since xk ∈ x0 + Lk, we have xk =
x0 +

∑k
ℓ=1 λℓH

ℓ(x0 − x∗) for some λℓ ∈ R. We compute

gk = ∇f(xk) = H(xk − x∗)

= H(x0 − x∗) +
k∑
ℓ=1

λℓH
ℓ+1(x0 − x∗)

= H(x0 − x∗) +

k−1∑
ℓ=1

λℓH
ℓ+1(x0 − x∗)︸ ︷︷ ︸

=yk

+λkH
k+1(x0 − x∗)

= yk + λkH
k+1(x0 − x∗).

We have yk ∈ Lk. Hence

Lin(Lk, gk) ⊂ Lin(Lk, H
k+1(x0 − x∗)) = Lk+1. (5.15)

The induction hypothesis ensures

Lin(Lk,∇f(xk)) = Lin(g0, . . . , gk−1).

Combined with xk = argminx∈x0+Lk
f(x), we find that

xk = x0 +
k∑
j=1

µ∗jgj−1.

for some µ∗j ∈ R. Let us consider the function

ϕ(µ) = f

(
x0 +

k∑
j=1

µjgj−1

)
.

The vector µ∗ is a minimizer of ϕ. Hence we have ∇ϕ(µ∗) = 0. We obtain for 1 ≤ j ≤ k,

∂ϕ(µ∗)

∂µj
= gTj−1gk = 0.

Therefore, the vectors g0, . . . , gk−1 are orthogonal to gk ̸= 0. Consequently, the dimen-
sion of Lin(Lk, gk) is equal to k + 1. Combined with (5.15), we find that Lin(Lk, gk) =
Lk+1.

Lemma 5.13 implies that at most n iterations of the CG method are necessary to
compute the solution to (5.13) because there are only n orthogonal vectors in Rn.
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Lemma 5.14. Let us define δk = xk+1 − xk. If the CG method does not terminate at
step k, then

Lk = Lin(δ0, . . . , δk−1)

and

δTℓ Hδj = 0 for 0 ≤ ℓ < j ≤ k − 1.

Proof. Since x1 ∈ x0 + L1, we have x1 = x0 + µ0g0 for some µ0 ̸= 0. Hence g0 =
(1/µ)(x1 − x0). We obtain L1 = Lin(x1 − x0).
Now suppose that the assertion is true for some k. We have xk+1 ∈ x0 + Lk and

δk = xk+1 − xk = xk+1 − x0 +
k−1∑
i=0

δi

Combined with δ0, . . . , δk−1 ∈ Lk ⊂ Lk+1, we find that δk ∈ Lk+1 and

Lin(δ0, . . . , δk) ⊂ Lk+1. (5.16)

Lemma 5.13 ensures that gi is orthorgonal to Li. Combined with Hδk = H(xk+1−xk) =
gk+1 − gk and δj ∈ Lk for j ≤ k − 1, we obtain

δTkHδj = δTj (gk+1 − gk) = 0.

Therefore, the vectors δ0, . . . , δk are H-orthogonal and thus linearly independent. We
conclude that equality must hold in (5.16).

Using Lemmas 5.13 and 5.14, we are ready to provide an explicit iterative scheme
for the CG method. Lemmas 5.13 and 5.14 ensure Lk+1 = Lin(Lk, gk) and Lk =
Lin(δ0, . . . , δk−1) with δk = xk+1 − xk ∈ Lk+1. Hence, we have

δk = xk+1 − xk = −γkgk +
k−1∑
j=0

λjδj

where λj ∈ R, γk ∈ Rn, and gj = ∇f(xj). Multiplying this identity by H and subse-
quently by δi with 0 ≤ i ≤ k − 1, we obtain

0 = δTkHδi = −γkgTkHδi +
k−1∑
j=0

λiδ
T
i Hδj .

Using Lemma 5.14 and Hδi = gi+1 − gi, we obtain

0 = −γkgTkHδi + λiδ
T
i Hδi = −γkgTk (gi+1 − gi) + λiδ

T
i Hδi.
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Hence λi = 0 for i < k − 1. For i = k − 1, we have

λk−1 =
γk∥gk∥22

δTk−1Hδk−1
.

This also ensures that γk ̸= 0. We conclude that xk+1 = xk + γkdk, where

dk = −gk + (λk−1/γk)δk−1.

We compute γk. Since x
k+1 = argminx∈x0+Lk+1

f(x), and xk+1 = xk + γkdk, we have

γk = argminγ∈R f(x
k + γkdk).

We obtain (compare with Exercise 5.3),

γk = −
dTk gk

dTkHdk
=

∥gk∥22
dTkHdk

.

Now we derive an identity for dk that does not explicitly depend on δk−1. Using δk−1 =
γk−1d

k−1 and the expression for γk−1, we obtain

dk = −gk + (λk−1/γk)δk−1

= −gk +
∥gk∥22

δTk−1Hδk−1
δk−1.

= −gk + (1/γk−1)
∥gk∥22

dTk−1Hdk−1
dk−1

= −gk
dTk−1Hdk−1

∥gk−1∥22
∥gk∥22

dTk−1Hdk−1
dk−1

= −gk +
∥gk∥22
∥gk−1∥22

dk−1.

We summarize our derivations in Algorithm 5.15.

Algorithm 5.15 (Conjugate gradient method).

0. Choose initial point/starting point x0 ∈ Rn, compute g0 = ∇f(x0) = Hx0−b, and
define d0 = −g0.

For k = 0, 1, 2, . . .

1. If gk = 0, then terminate with xk.

2. Compute xk+1 = xk + γkd
k, where

γk =
gTk gk

dTkHdk
.
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3. Compute gk+1 = Hxk+1 − b and

dk+1 = −gk+1 + βk+1dk, where βk+1 =
∥gk+1∥22
∥gk∥22

.

We recall that the CG method requires at most n iterations until it terminates. We
now state a result on the convergence rate of the CG method (see Algorithm 5.15).

Theorem 5.16. If f is as in (5.14) and (xk) are the iterates of Algorithm 5.15, then

f(xk)− f(x∗) ≤ 4

(√
κf − 1

√
κf + 1

)2k(
f(x0)− f(x∗)

)
,

where κf is the condition number of f , that is, the ratio of the largest and the smallest
eigenvalue of H.

Comparing this convergence rate with that of the gradient descent provided in Proposi-
tion 5.9, we have an improved dependence on the condition number κf . The convergence
bound in (5.16) implies that if the condition number κf of the strongly convex quadratic
function f is (very) small, then a fast convergence can be expected. However, this bound
does not imply that a large condition number results in slow convergence of CG. The
convergence of CG depends mostly on the eigenvalues of H; more precisely on the distri-
bution of the eigenvalues of H. It can be shown that the CG method converges quickly
if the eigenvalues of H are clustered.
Theorem 5.16 asserts that the CG method converges fast if the condition number of

f is small.

5.4 Newton’s method

We continue investigating methods the unconstrained minimization problem

min
x∈Rn

f(x). (5.17)

Throughout the section, we require f : Rn → R be twice continuously differentiable.
In the simplest case, Newton’s method intends to find a root of a differentiable function

ϕ : R → R with ϕ(t∗) = 0 for some t∗ ∈ R. If t is close to t∗, then we have

0 = ϕ(t∗) ≈ ϕ(t) + ϕ′(t)(t∗ − t).

The idea of Newton’s method is to compute an approximation tk+1 to t∗ via

0 = ϕ(tk) + ϕ′(tk)(tk+1 − tk).

If ϕ′(tk) ̸= 0, we can write

tk+1 = tk − ϕ′(tk)
−1ϕ(tk).
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Figure 5.5 provides an illustration.

t

ϕ(t)

t0t1

Figure 5.5: Illustration of Newton’s method applied to the root finding of ϕ(t) =
(1/2)t2 − 1. The figure shows the graph of ϕ (solid line) and the tangent
(dashed line) of ϕ at t0. The point t1 is the zero of this tangent.

This iterative scheme also applies to foot finding of vector-valued mappings F : Rn →
Rn. If F ′(xk) is an invertiable matrix, then the Newton iteration is given by

xk+1 = xk − F ′(xk)−1F (xk).

For solving the unconstrained minimization problem (5.17), we apply Newton’s method
to the mapping F = ∇f and obtain the iterative scheme

xk+1 = xk −∇2f(xk)−1∇f(xk).

We may also motivate Newton’s method via a second-order Taylor’s expansion of f
about xk and subsequent minimization of the quadratic function. We have

f(x) ≈ f(xk) +∇f(xk)(x− xk) + (1/2)(x− xk)T∇2f(xk)(x− xk).

Let ϕ(x) be the quadratic function on the right-hand side. We obtain

∇ϕ(x) = ∇f(xk) +∇2f(xk)(x− xk).

So computing xk+1 amounts to computing a stationary point of the model function ϕ.
Let us state the local Newton method as an algorithm.

Algorithm 5.17 (Local Newton method).

0. Choose initial point/starting point x0 ∈ Rn.
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For k = 0, 1, 2, . . .

1. Compute sk as a solution to

∇2f(xk)s = −∇f(xk).

2. Define xk+1 = xk + sk.

We recall that the second-order sufficient optimality conditions of minimizing f over
Rn at a point x∗ are given by

∇f(x∗) = 0 and there exists µ > 0 with dT∇2f(x∗)d ≥ µdTd for all d ∈ Rn. (5.18)

see Proposition 4.12. The latter is equivalent to ∇2f(x∗) is positive definite which is in
turn equivalent to the fact that the minimum eigenvalue λmin(∇2f(x∗)) of ∇2f(x∗) is
positive.
We state a basic convergence result of Algorithm 5.17.

Theorem 5.18. Let f : Rn → R be two times continuously differentiable in a neigh-
borhood of x∗ ∈ Rn and suppose that x∗ satisfies the second-order sufficient optimality
conditions (5.18). Then for all x0 sufficiently close to x∗, Algorithm 5.17 is well-defined
and either computes xk = x∗ for some k or generates a sequence (xk) converging to x∗

as k → ∞ and the convergence rate is q-superlinear:

∥xk+1 − x∗∥2 = o(∥xk − x∗∥2).

We do not provide a proof of Theorem 5.18. However, we provide a short computation
showing that if x∗ fulfills the conditions in Theorem 5.18 and Algorithm 5.17 generates
a sequence (xk) converging to x∗, then we have q-superlinear convergence:

∥xk+1 − x∗∥2 = o(∥xk − x∗∥2).

Let us verify the fast convergence. Since ∇2f is continuous and xk → x∗, we have
∇2f(xk) → ∇2f(x∗). Combined with the fact that ∇2f(x∗) is positive definite, we find
that ∇2f(xk) is positive semidefinite for all sufficiently large k. Using Taylor’s theorem,
we find that

0 = ∇f(x∗) = ∇f(xk) +∇2f(xk)(x∗ − xk) + o(∥xk − x∗∥2).

Multiplying by the inverse of ∇2f(xk) and using ∇2f(xk)sk = −∇f(xk), we obtain

xk+1 − x∗ = xk − x∗ + sk = xk − x∗︸ ︷︷ ︸
=∇2f(xk)−1∇f(xk)+o(∥xk−x∗∥2)

−∇2f(xk)−1∇f(xk)

= o(∥xk − x∗∥2).

Hence, we obtain

∥xk+1 − x∗∥2 = o(∥xk − x∗∥2).
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We state and establish another convergence result of Algorithm 5.17. We require an
error bound related to that in Lemma 5.5. Let f : Rn → R be twice differentiable. We
say that ∇2f is Lipschitz continuous with Lipschitz constant M ≥ 0 if for all x, y ∈ Rn,

∥∇2f(y)−∇2f(x)∥2 ≤M∥y − x∥2.

The norm on the left-hand side is the spectral norm. For matrix A ∈ Rn×n, it is defined
by

∥A∥2 := sup
∥x∥2≤1

∥Ax∥2.

If A ∈ Rn×n is symmetric positive definite, then ∥A∥2 equals its maximum eigenvalue
λmax(A) and we have ∥A−1∥2 = 1/λmin(A). These facts may be established using an
eigendecomposition of the symmetric positive definite matrix A. Moreover

If A = AT ∈ Rn×n, and B = BT ∈ Rn×n, then |λmin(A)− λmin(B)| ≤ ∥A−B∥2.
(5.19)

see, e.g., p. 408 in [10].

Lemma 5.19. If f : Rn → R is twice differentiable and ∇2f is Lipschitz continuous
with Lipschitz constant M ≥ 0, then for all x, y ∈ Rn,

∥∇f(y)−∇f(x)−∇2f(x)(y − x)∥2 ≤ (M/2)∥y − x∥22.

Proof. The proof is similar to that of Lemma 5.5 and hence omitted.

Now we state and establish a convergence result of Algorithm 5.17. We say that a
sequence (yk) converges quadratically to y∗ ∈ Rn if yk → y∗ and if there exists a constant
C > 0 with

∥yk+1 − y∗∥2 ≤ C∥yk − y∗∥22. (5.20)

Quadratic convergence is extremely fast. After a few iterations, each iteration approxi-
mately doubles the number of significant figures in yk+1.

Theorem 5.20. Let f : Rn → R be twice differentiable and let ∇2f be Lipschitz con-
tinuous with Lipschitz constant M > 0. Suppose that x∗ satisfies the second-order
sufficient optimality conditions (5.18). If Algorithm 5.17 is initialized with an initial
point x0 ∈ Rn satisfying ∥x0 − x∗∥2 ≤ 2µ/(3M), then it generates a sequence (xk) with
∥xk − x∗∥2 ≤ 2µ/(3M) and

∥xk+1 − x∗∥2 ≤ 3M/(2µ)∥xk − x∗∥22.

Proof. Let y ∈ Rn be a point with ∥y− x∗∥2 ≤ 2µ/(3M). Let us first show that ∇2f(y)
is positive definite. Since ∇2f is Lipschitz continuous with Lipschitz constant M , we
have

∥∇2f(y)−∇2f(x∗)∥2 ≤M∥y − x∗∥2.
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Hence (5.19) ensures

λmin(∇2f(y)) ≥ λmin(∇2f(x∗))−M∥y − x∗∥2.

Combined with (5.18), we obtain

λmin(∇2f(y)) ≥ λmin(∇2f(x∗))−M∥y − x∗∥2 ≥ µ− 2Mµ/(3M) = (1− 2/3)µ.

Hence the minimum eigenvalue of ∇2f(y) is ≥ (µ/3) for all y ∈ Rn with ∥y − x∗∥2 ≤
2µ/(3M) and we have

∥∇2f(y)−1∥2 ≤ (3/µ).

Using Lemma 5.19 and ∇f(x∗) = 0, we find that for all y ∈ Rn,

∥ − ∇f(y)−∇2f(y)(x∗ − y)∥2 ≤ (M/2)∥y − x∗|22.

Using xk+1 = xk −∇2f(xk)−1∇f(xk), we obtain

xk+1 − x∗ = xk − x∗ −∇2f(xk)−1∇f(xk)
= ∇2f(xk)−1

(
∇2f(xk)(xk − x∗)−∇f(xk)

)
.

Taking norms and applying our previous calculations, we obtain

∥xk+1 − x∗∥2 ≤ ∥∇2f(xk)−1∥2 · (M/2)∥xk − x∗∥22 ≤ 3M/(2µ)∥xk − x∗∥22.

Since ∥x0 − x∗∥2 ≤ 2µ/(3M), we have ∥x1 − x∗∥2 ≤ 3M/(2µ) · 2µ/(3M)∥x0 − x∗∥2 ≤
2µ/(3M). Inductively, we obtain ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 ≤ 2µ/(3M).

The local Newton method is affine invariant: Let b ∈ Rn and let A ∈ Rn×n be an
invertiable matrix. Let us apply the local Newton method to minimizing the function
g(y) := f(Ay + b). We have ∇g(y) = AT∇f(Ay + b) and ∇2g(y) = AT∇2f(Ay + b)A.
The Newton iteration applied to minimizing g reads

yk+1 = yk −∇2g(yk)−1∇g(yk)

= yk −
[
AT∇2f(Ayk + b)A

]−1
AT∇f(Ayk + b)

= yk −A−1∇2f(Ayk + b)−1
[
(AT )−1AT

]
∇f(Ayk + b),

= yk −A−1∇2f(Ayk + b)−1∇f(Ayk + b),

Multiplying by A and adding b, we obtain

Ayk+1 + b = Ayk + b−∇2f(Ayk + b)−1∇f(Ayk + b).

Defining xk = Ayk + b and xk+1 = Ayk+1 + b, we find that this iteration is the same the
Newton iteration applied to f .

The local Newton method for unconstrained minimization of f has several serious
issues:
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1. The matrices ∇2f(xk) may not be invertible and therefore xk+1 cannot be com-
puted in general.

2. The points xk+1 may not decrease the objective function f ; it can happen that
f(xk+1) > f(xk).

3. The sequence (xk) may diverge if x0 is not close to x∗. Let us consider the local
Newton method as applied to the one-dimensional optimization problem

min
t∈R

√
1 + t2.

The optimal solution is t∗ = 0. It can be shown that the Newton iteration is given
by tk+1 = −t3k. If |t0| > 1, the method diverges and if |t0| < 1 it converges quickly.
Moreover if |t0| = 1, then Newton’s method oscillates.

For these reasons, it is necessary to modify the local Newton method to make it a
reliable minimization algorithm for unconstrained minimization.
Let us point out one modification of the local Newton method that is globally conver-

gent for strongly convex objective functions f .

Algorithm 5.21 (A modified Newton method).

0. Choose initial point/starting point x0 ∈ Rn.

For k = 0, 1, 2, . . .

1. Compute sk as a solution to

∇2f(xk)s = −∇f(xk).

2. Compute γk via the minimization rule:

γk = argminγ≥0 f(x
k + γks

k)

3. Define xk+1 = xk + γks
k.

If f is twice continuously differentiable, strongly convex, and the level set {x ∈
Rn : f(x) ≤ f(x0)} is bounded, then the sequence (xk) generated by Algorithm 5.21 con-
verges to the unique minimizer of f . The modified Newton method (5.21) is well-defined
for twice differentiable, strongly convex functions f , in this case ∇2f(xk) is positive
definite and hence invertiable. However, if f is not strongly convex, this algorithm may
not be well-defined.
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5.5 Variable metric methods*

We develop a somewhat general approach to developing minimization methods for un-
constrained smooth minimization. Let us recall that the step xk+1 = xk − γk∇f(xk) of
the gradient method is the solution to

min
y∈Rn

f(xk) +∇f(xk)T (y − xk) + (1/(2γk))∥y − xk∥22,

provided that γk > 0. We can also view the update of the gradient method as xk+1 =
xk + γks

k, where sk solves

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)∥s∥22. (5.21)

Let us verify that xk+1 = xk + γks
k equals the update xk+1 = xk − γ∇f(xk). Since sk

is the solution to (5.21), we have ∇f(xk) + sk = 0. Hence sk = −∇f(xk) and we obtain
xk+1 = xk + γks

k = xk − γk∇f(xk).
Let us assume that ∇2f(xk) is positive definite. The iteration xk+1 = xk + sk of

the local Newton method is given by the solution sk to the linear system ∇2f(xk)sk =
−∇f(xk). The Newton step sk is also the solution to

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)sT∇2f(xk)s.

One approach to motivating variable metric methods is to choose a symmetric positive
definite matrix Hk and compute sk as the solution to

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)sTHks (5.22)

and use the update xk+1 = xk + γks
k, where the step size sk is determined by line

search. When choosing Hk = I, then we obtain the gradient method. If ∇2f(xk) is
positive definite, we can choose Hk = ∇2f(xk) and γk = 1 to obtain the local Newton
method.
The name “variable metric method” may be motivated as follows. If Hk is symmetric

positive definite, then (s, d)Hk
:= sTHkd defines a scalar product and ∥x∥Hk

=
√
xTHkx

a norm. The optimization problem (5.22) can be written as

min
s∈Rn

f(xk) + (H−1
k ∇f(xk), s)Hk

+ (1/2)∥s∥2Hk
.

We state a generic variable metric method.

Algorithm 5.22 (Variable metric method).

0. Choose initial point/starting point x0 ∈ Rn.

For k = 0, 1, 2, . . .

1. Choose a symmetric positive definite matrix Hk ∈ Rn×n.
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2. Compute sk as a solution to

Hks = −∇f(xk). (5.23)

3. Choose γk ≥ 0 via line search applied to γ 7→ f(xk + γks
k).

4. Define xk+1 = xk + γks
k.

For the variable metric method to converge, it does not suffice to have the matrices Hk

symmetric positive definite. We require them to satisfy the following condition: there
exists µ > 0 and L > 0 such that

µdTd ≤ dTHkd ≤ LdTd for all d ∈ Rn, k ∈ N. (5.24)

This is equivalent to requiring λmin(Hk) ≥ µ and λmax(Hk) ≤ L for all k ∈ N. This
assumption requires the norms of Hk and H−1

k to be bounded independently of the
iteration counter k. In other words, the minimum eigenvalues of Hk must uniformly be
bounded from below and the maximum eigenvalue of Hk must uniformly be bounded
from above. This assumption prevents λmin(Hk) → 0 and λmax(Hk) → ∞, for example.

We state a global convergence result of the variable metric method.

Theorem 5.23. Let f : Rn → R be twice continuously differentiable and let the level set

{x ∈ Rn : f(x) ≤ f(x0)}

be bounded, where x0 ∈ Rn. We apply Algorithm 5.22 with starting value x0 and suppose
that either the minimization rule or the Armijo rule is used to compute the step sizes
γk. Suppose that there exists constants µ > 0 and L ≥ 0 such that (5.24) holds true.
Then the sequence (xk) generated by Algorithm 5.22 is bounded, f(xk+1) ≤ f(xk) for all
k ∈ N, and all accumulation points of (xk) are critical points of f .

The proof of this theorem may be established using arguments similar to those used
in the proof of Theorem 5.3.
Let us discuss a few options for choosing the matrices Hk in Algorithm 5.22.
• The choice Hk = I yields the gradient descent method.
• If f is strongly convex with parameter µ > 0, then we can choose Hk = ∇2f(xk).
Since f is strongly convex with parameter µ, the first condition in (5.24) holds true.
The upper bound holds true with L being the maximizer of ∥∇2f(x)∥2 over the
level set {x ∈ Rn : f(x) ≤ f(x0)}. The maximizer exists if f is twice continuously
differentiable and the level set is bounded.

• The Levenberg–Marquardt regularization of the Hessian ∇2f(xk) is the matrix

Hk = ∇2f(xk) + ρkI,

where I ∈ Rn×n is the identity matrix and ρk ≥ 0 is a regularization parameter. If
ρk is larger than the minimum eigenvalue of∇2f(xk), thenHk is symmetric positive
definite. Indeed, if ρk > λmin(∇2f(xk)), then λmin(Hk) = λmin(∇2f(xk))+ρk > 0.
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To ensure the conditions in (5.24), we can request that ρk is chosen in such a way
that λmin(Hk) ≥ µ for all k ∈ N. Here µ > 0 is some constant chosen before
running the variable metric method.
The method of choice for checking whether a symmetric matrix is positive definite
is the Cholesky decomposition. If applied to a symmetric matrix the decomposi-
tion succeeds, then this matrix is positive definite; if it fails, then the matrix is
not positive definite. Using the Cholesky decomposition, we can compute rather
efficiently, a small number ρk ≥ 0 such that Hk − µI is positive definite. This
ensures λmin(Hk) > µ. When the numbers ρk are properly chosen, then we can
ensure also the second condition in (5.24) (provided that f is twice continuously
differentiable and the level set of f corresponding to f(x0) is bounded.) However,
this scheme may result in Hk ̸= ∇2f(xk) even if ∇2f(xk) is positive definite.

The global convergence of the variable metric method can also be established under
a milder condition on the symmetric positive definite matrices Hk than that in (5.24).
We require instead of (5.24) the existence of a constant C > 0 such that

κ(Hk) =
λmax(Hk)

λmin(Hk)
≤ C for all k ∈ N. (5.25)

Here κ(Hk) is the condition number of the symmetric positive definite matrix Hk. The
condition (5.24) ensures (5.25) with C = L/µ. However, (5.25) allows for a larger class
of matrices Hk than (5.24). Let us define sk = −H−1

k ∇f(xk). We have −∇f(xk)T sk =
∇f(xk)TH−1

k ∇f(xk). If ∇f(xk) ̸= 0, then the condition (5.25) ensures

−∇f(xk)T sk

∥sk∥2
≥ (1/C)∥∇f(xk)∥2. (5.26)

Let us verify this estimate.

−∇f(xk)T sk ≥ ∇f(xk)TH−1
k ∇f(xk) ≥ λmin(H

−1
k )∥∇f(xk)∥22 = (1/λmax(Hk))∥∇f(xk)∥22.

and

∥sk∥2 = ∥H−1
k ∇f(xk)∥2 ≤ ∥H−1

k ∥2∥∇f(xk)∥2 = λmin(Hk)∥∇f(xk)∥2.

Combining these estimates and using (5.25), we obtain the assertion.
Before we state a convergence result of the variable metric method, let us introduce the

Armijo rule (5.3) for steps sk other than the gradient step −∇f(xk): Compute γk > 0
such that

f(xk + γks
k) ≤ f(xk) + εγk∇f(xk)T sk,

f(xk + ηγks
k) ≥ f(xk) + εηγk∇f(xk)T sk,

(5.27)

where ε ∈ (0, 1) and η > 1 are fixed parameters. For sk = −∇f(xk), we obtain (5.3).

141



5 Optimization Methods for Unconstrained Optimization

Theorem 5.24. Let f : Rn → R be twice continuously differentiable and let the level set

S = {x ∈ Rn : f(x) ≤ f(x0)}

be bounded, where x0 ∈ Rn. We apply Algorithm 5.22 with starting value x0 and suppose
the Armijo rule (5.27) is used to compute the step sizes γk. Suppose that there exists
a constant C > 0 such that (5.25) holds true. Then the sequence (xk) generated by
Algorithm 5.22 is bounded, f(xk+1) ≤ f(xk) for all k ∈ N, and all accumulation points
of (xk) are critical points of f .

Proof. Let us define ϕ(γ) := f(xk + γsk). We have ϕ′(0) = ∇f(xk)T sk. Combined with
sk = −H−1

k ∇f(xk), we obtain ϕ′(0) = −∇f(xk)TH−1
k ∇f(xk). So ϕ′(0) < 0 provided

that ∇f(xk) ̸= 0. Using arguments similar to those in (5.1.1), we can show that there
exists γk > 0 such that the Armijo conditions (5.27) hold true. We obtain f(xk+1) ≤
f(xk). We conclude that the sequence (xk) is well-defined and contained in the level set
S. Since (f(xk)) is monotonically nonincreasing and (xk) ⊂ S is bounded, the sequence
(f(xk)) converges to some finite number as k → ∞.
Let us assume that ∇f(xk) ̸= 0 for all k ∈ N. In light of (5.26), it suffices to show

that

mk :=
−∇f(xk)T sk

∥sk∥2
→ 0 as k → ∞.

Note that mk ≥ 0. Suppose that this term does not converge to 0. Then there exists
δ > 0 and a subsequence (mkℓ) of (mk) such that mkℓ ≥ δ for all ℓ ∈ N. Using (5.27),
we obtain for all ℓ,

f(xk)− f(xkℓ+1) ≥ −εγkℓ
∇f(xkℓ)T skℓ

∥skℓ∥2
∥skℓ∥2 ≥ εγkℓδ∥s

kℓ∥2.

Since f(xk) − f(xk+1) → 0 as k → ∞, we have γkℓ∥skℓ∥2 → 0 as ℓ → ∞. Hence there
exists r1 ∈ (0,∞) such that γkℓ∥skℓ∥2 ≤ r1 for all ℓ ∈ N. Since the level set S is bounded
and closed (as f is continuous), the set X := {x + s : x ∈ S, ∥s∥2 ≤ ηr1} is bounded
and closed. Consequently, Conv(X) is bounded, closed, and convex (see Exercise 1.6).
The function x 7→ ∥∇2f(x)∥2 is continuous and hence there exists L > 0 such that
∥∇2f(x)∥2 ≤ L for all x ∈ Conv(X). Consequently, ∇f is Lipschitz continuous on
Conv(X) with Lipschitz constant L. Using a generalization of Lemma 5.5, we obtain for
all x, y ∈ Conv(X),

f(y)− f(x)−∇f(x)T (y − x) ≤ (L/2)∥y − x∥22

Using (5.27), we further obtain

f(xkℓ + ηγkℓs
kℓ)− f(xkℓ) ≥ εηγkℓ∇f(x

kℓ)T skℓ .

We bound the left-hand side using the above inequality and mkℓ ≥ δ. We get

f(xkℓ + ηγkℓs
kℓ)− f(xkℓ) ≤ ηγkℓ∇f(x

kℓ)T skℓ + (L/2)γ2kℓη
2∥skℓ∥22.
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Combining these two inequalities,

(L/2)η2γ2kℓ∥s
kℓ∥22. ≥ (ε− 1)ηγkℓ∇f(x

kℓ)T skℓ = −(1− ε)ηγkℓ
∇f(xkℓ)T skℓ

∥skℓ∥2
∥skℓ∥2

≥ (1− ε)ηγkℓδ∥s
kℓ∥2.

Dividing by ηγkℓ∥skℓ∥2, we have (L/2)ηγkℓ∥skℓ∥2 ≥ (1 − ε)δ. Taking limits as ℓ → 0,
we obtain 0 ≥ (1 − ε)δ. Since ε ∈ (0, 1), we obtain a contraction and hence mk → 0 as
k → ∞.
Now, let x̄ be an accumulation point of (xk) and let (xkℓ) be a subsequence of (xk)

converging to x̄ as ℓ→ ∞. If ∇f(xℓ) = 0 for some ℓ, then we have xkℓ = xkℓ+1 = · · · =
xkℓ+1 = · · · and hence xℓ = x̄. Now let ∇f(xkℓ) ̸= 0 for all all ℓ ∈ N. Using mk → 0 and
(5.26), we find that ∇f(xk) → 0. Since ∇f is continuous, we must have ∇f(x̄) = 0.

5.6 Quasi-Newton methods

Quasi-Newton methods can be interpreted as variable metric methods (see Algorithm 5.22).
Instead of using the Hessian matrix ∇2f(xk+1), quasi-Newton methods construct certain
approximations Hk+1 to it. These approximations are constructed using certain update
formulas and are required to satisfy the quasi-Newton equation

Hk+1(x
k+1 − xk) = ∇f(xk+1)−∇f(xk). (5.28)

The Hessian matrix ∇2f(xk+1) may not satisfy this relation. However, if f is a strongly
convex quadratic function, say, f(x) = (1/2)xTAx − bTx, then Hk+1 = ∇2f(xk+1)
satisfies the quasi-Newton equation. The quasi-Newton equation may be motivated by
considering a first-order Taylor’s expansion of the gradient ∇f at xk about the expansion
point xk+1. We have

∇f(xk+1)−∇f(xk) ≈ ∇2f(xk)(xk+1 − xk).

We can always find a matrix Hk+1 that satisfies the quasi-Newton equation:

∇f(xk+1)−∇f(xk) = Gk+1(x
k+1 − xk),

where

Gk+1 =

∫ 1

0
∇2f(xk + τ(xk+1 − xk))dτ.

However, this matrix is generally not available computationally, as it is defined via an
integral.
As already mentioned, quasi-Newton matrices are defined using update formulas.

These update formulas use Hk and the differences xk+1−xk, and ∇f(xk+1)−∇f(xk) to
obtain Hk+1. For k = 0, we get to choose x0 and a symmetric positive definite matrix
H0.

We may require the following conditions on potential update formulas:
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1. Hk+1 is symmetric and positive definite,

2. Hk+1 satisfies the quasi-Newton equation, and approximates ∇2f(xk+1), and

3. the computational costs for updating and solving linear systems involving Hk+1

are low.

Let us attempt to construct an update rule that satisfies our requirements. Let us
define

dk := xk+1 − xk, and pk := ∇f(xk+1)−∇f(xk).

We consider the update

Hk+1 = Hk + ρku
k(uk)T , (5.29)

where ρk ∈ R and uk ∈ Rn is a vector with ∥uk∥2 = 1. The matrix uk(uk)T has rank
one and is called the outer product of the vector uk. (The inner product is (uk)Tuk.)
So Hk+1 is a rank one update of Hk. We require that Hk+1 satisfies the quasi-Newton
equation (5.28) and based on this requirement we compute ρk and uk. Inserting Hk+1

into the quasi-Newton equation, we obtain

Hk+1d
k = Hkd

k + ρk
(
uk(uk)T

)
dk = pk. (5.30)

Our task is to provide formulas for ρk and uk. If pk−Hkd
k = 0, and ∇f(xk)+Hkd

k = 0
(that is, dk solves the linear system in (5.23)), then we obtain

∇f(xk+1) = ∇f(xk) + pk = ∇f(xk) +Hkd
k = 0.

This means xk+1 is a stationary point of f . If pk−Hkd
k ̸= 0, then we obtain from (5.30)

the identity

Hkd
k − pk = −ρk(uk(uk)T )dk = −ρk((dk)Tuk)uk. (5.31)

The latter identity can be established using computations. Since −ρk((dk)Tuk) is a real
number and the right-hand side is nonzero, we find that the vector uk is a multiple of
the vector Hkd

k − pk:

uk = ± Hkd
k − pk

∥Hkdk − pk∥2
.

Let us choose

uk =
Hkd

k − pk

∥Hkdk − pk∥2
.

Now we compute ρk. If (d
k)T (Hkd

k − pk) ̸= 0, then (5.31) ensures

∥Hkd
k − pk∥2(dk)Tuk = −ρk((dk)Tuk)uk.
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Hence

∥Hkd
k − pk∥2 = −ρk(dk)Tuk = −ρk

(dk)T (Hkd
k − pk)

∥Hkdk − pk∥2
,

yielding

ρk =
∥Hkd

k − pk∥22
(dk)T (pk −Hkdk)

.

Putting together the pieces and using (5.29), we obtain

Hk+1 = Hk +
(pk −Hkd

k)(pk −Hkd
k)T

(pk −Hkdk)Tdk
.

These update formula is called symmetric rank-one (SR1) formula. It has many issues:
(i) we can have (dk)T (Hkd

k − pk) = 0 and then the update formula is not well-defined;
(ii) if (dk)T (Hkd

k−pk) < 0, then Hk+1 may not be positive definite even if Hk is positive
definite; (iii) Hk+1 may lack an inverse; and (iv) the vector −H−1

k+1∇f(x
k+1) may not

be a descent direction of f .
For these reasons the SR1 update formula violates some of our requirements. The

SR update formula is a rank-one update formula of Hk. The most successful update
formulas are given by rank-two updates of Hk:

Hk+1 = Hk + ρku
k(uk)T + ϱkv

k(vk)T .

with ρk, ϱk ∈ R and uk and vk are nonzero vectors. We state four rank-two update
formulas:

• Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formula:

HBFGS
k+1 = Hk +

pk(pk)T

(pk)Tdk
− Hkd

k(Hkd
k)T

(dk)THkdk
.

• Davidon–Fletcher–Powell (DFP) update formula:

HDFP
k+1 = Hk +

(pk −Hkd
k)(pk)T + pk(p−Hkd

k)T

(pk)Tdk
− (pk −Hkd

k)Tdk

((pk)Tdk)2
pk(pk)T

• Broyden family:

Hλ
k+1 = (1− λ)HBFGS

k+1 + λHDFP
k+1 with λ ∈ R.

• convex Broyden family: Hλ
k+1 with λ ∈ [0, 1].

For λ = 0, we obtain the BFGS update formula.
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Let us discuss basic properties of the update formulas given by the Broyden family.

Proposition 5.25. 1. If Hk is symmetric, (pk)Tdk ̸= 0 and (dk)THkd
k ̸= 0, then the

matrices Hλ
k+1, λ ∈ R, are well-defined, symmetric and satisfy the quasi-Newton

equation (5.28).

2. If Hk is symmetric positive definite and (pk)Tdk > 0, then the matrices Hλ
k+1,

λ ≥ 0, are symmetric positive definite.

The proposition shows that we can use the BFGS update formula within a variable
metric method, provided that H0 is symmetric positive definite and (pk)Tdk > 0 for
all iterations k ∈ N. However, this approach would require us to solve linear systems
involving the BFGS matrices. Instead of constructing the matrices HBFGS

k+1 , it would

be helpful to construct their inverses BBFGS
k+1 , as this would only require matrix-vector

multiplications for step computations. Before we provide update rules for inverse quasi-
Newton matrices, let us briefly show how we can use the minimization rule to ensure
(pk)Tdk > 0. Let Hk be symmetric positive definite, let f be twice continuously dif-
ferentiable and bounded from below, and ∇f(xk) ̸= 0. We define sk = −H−1

k ∇f(xk)
and compute γk via minimization rule applied to γ 7→ ϕ(γ) = f(xk + γsk). Since Hk is
symmetric positive definite and ∇f(xk) ̸= 0, sk is a descent direction of f . The mini-
mization rule computes γk > 0. We have ϕ′(γk) = 0 and ϕ′(γk) = ∇f(xk + γks

k)T sk.
Since dk = xk+1 − xk = γks

k, we obtain

(pk)Tdk = γk(p
k)T sk = γk∇f(xk+1)T sk︸ ︷︷ ︸

=0

−γk∇f(xk)T sk = γk∇f(xk)TH−1
k ∇f(xk) > 0.

Let us provide the inverse update formulas for the BFGS and DFP update formulas.

Proposition 5.26. Let Hk be symmetric positive definite and define Bk = H−1
k . Suppose

that (pk)Tdk > 0. Then the inverse updates for the matrices BBFGS
k+1 = (HBFGS

k+1 )−1 and

BDFP
k+1 = (HDFP

k+1 )−1 are given by

BBFGS
k+1 = Bk +

(dk −Bkp
k)(dk)T + dk(dk −Bkd

k)T

(dk)T pk
− (dk −Bkp

k)T pk

((dk)T pk)2
dk(dk)T , (5.32)

BDFP
k+1 = Bk +

dk(dk)T

(dk)T pk
− Bkp

k(Bkp
k)T

(pk)TBkpk
.

We now state a quasi-Newton method, the BFGS method. It uses the inverse BFGS
updates in (5.32).

Algorithm 5.27 (Inverse BFGS method).

0. Choose initial point/starting point x0 ∈ Rn and a symmetric positive definite
matrix B0.

For k = 0, 1, 2, . . .
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1. Compute

sk = −Bk∇f(xk)

2. Choose γk ≥ 0 via line search applied to γ 7→ f(xk + γsk).

3. Define xk+1 = xk + γks
k.

4. Define dk = xk+1 − xk and pk = ∇f(xk+1)−∇f(xk)

5. Compute Bk+1 using (5.32).

We close the section with a few remarks about quasi-Newton methods and Algo-
rithm 5.27.

• In Algorithm 5.27, we have not specified a line search procedure. In practical
implementations, the step size γk is implemented via the Wolfe line search: Choose
γk > 0 such that

f(xk + γks
k) ≤ f(xk) + c1γk∇f(xk)T sk,

∇f(xk + γks
k)T sk ≥ c2∇f(xk)T sk,

where 0 < c1 < c2 < 1. The first condition ensures decrease in f , provided that
∇f(xk)T sk < 0 and the second condition ensures that γk is “large enough.”

The Wolfe line search can be used to show that (dk)T pk > 0, a requirement for the
matrices Bk+1 be positive definite.

• Let f be twice continuously differentiable, strongly convex and ∇f be Lipschitz
continuous. If Algorithm 5.27 is used with theWolfe line search and {x ∈ Rn : f(x) ≤
f(x0)} is bounded, then it can be shown that the sequence generated by Algo-
rithm 5.27 converges to the unique minimizer of f .

• Global convergence to stationary points of quasi-Newton methods and in particular
Algorithm 5.27 may not occur for general nonconvex objective functions. Coun-
terexamples are known. In light of Theorem 5.24, the issue appears to be that the
condition number of the matrices Bk may not be uniformly bounded.

However, under certain assumptions, it is possible to show that the sequence (xk)
generated by Algorithm 5.27 converges superlinearly to x∗, provided that (xk)
converges to x∗ and x∗ is a stationary point of f with positive definite Hessian at
x∗.

• Recently convergence rates for quasi-Newton method applied to strongly convex
quadratic functions have been established [17, 16, 15].

• If Algorithm 5.27 is used with the inverse DFP update formulas, and applied to
strongly convex quadratic functions, then it computes the solution in no more than
n steps. If B0 = I, then this scheme is the same as the conjugate gradient method.
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• The efficient implementation of quasi-Newton method requires many considera-
tions to obtain reliable implementations.

• The update formula (5.32) can also be written as

BBFGS
k+1 = V T

k BkVk + ρkd
k(dk)T ,

where

ρk =
1

(pk)Tdk
, Vk = I − ρkp

k(dk)T .

The matrices Bk+1 = BBFGS
k+1 are generally dense and hence the cost of storing

them can be large if n is large. For this reason, limited memory BFGS (L-BFGS)
methods have been developed. The update of H0 within L-BFGS is performed
using pi and di for k −min{k,m − 1} ≤ i ≤ k for some small natural number m
instead of pi and di for 0 ≤ i ≤ k.

5.7 Cubic Regularization of Newton’s method

The cubic Newton method has been a breakthrough in nonlinear optimization. To
motivate the method, let us recall that the Newton step sk is a critical point of the
optimization problem

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)sT∇2f(xk)s.

The quadratic objective function provides an approximation to f(xk + s):

f(xk + s) ≈ f(xk) +∇f(xk)T s+ (1/2)sT∇2f(xk)s.

We can quantify the error of the second order Taylor’s expansion using the next lemma.

Lemma 5.28. Let f : Rn → R be twice differentiable. If ∇2f is Lipschitz continuous
with Lipschitz constant L ≥ 0, then for all x, y ∈ Rn,

|f(y)− f(x)−∇f(x)T (y − x)− (1/2)(y − x)T∇2f(x)(y − x)| ≤ (L/6)∥y − x∥32.

Proof. The verification is related to that of Lemma 5.5.

Let f : Rn → R be twice differentiable and let ∇2f be Lipschitz continuous with
Lipschitz constant L > 0. In its simplest form, the cubic Newton method computes
Mk > 0 and sk as a minimizer of the cubic subproblem

min
s∈Rn

f(xk) +∇f(xk)T s+ (1/2)sT∇2f(xk)s+ (Mk/6)∥s∥32, (5.33)

and subsequently defines xk+1 = xk + sk. If Mk ≥ L, then the objective function

ϕk(s) := f(xk) +∇f(xk)T s+ (1/2)sT∇2f(xk)s+ (Mk/6)∥s∥32.
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of this auxiliary problem provides a global upper bound on f(xk + s) according to
Lemma 5.28, that is, f(xk + s) ≤ ϕk(s) for all s ∈ Rn. If Mk ≥ L and sk ̸= 0, then we
have f(xk+sk) ≤ ϕk(s

k) < ϕk(0) = f(xk). If sk = 0, then we can show that ∇f(xk) = 0
and that ∇2f(xk) is positive semidefinite (see Proposition 5.30).
We formulate the cubic Newton method.

Algorithm 5.29 (Cubic Newton method).

0. Choose initial point/starting point x0 ∈ Rn and L0 > 0 with L0 ≤ 2L.

For k = 0, 1, 2, . . .

1. Compute Mk ∈ [L0, 2L] such that

f(xk + sk) ≤ ϕk(s
k), where sk solves (5.33).

2. Define xk+1 = xk + sk.

The first step of the cubic Newton method may be implemented as follows. Fix an
iteration k ∈ N and choose Mk ≥ L0. We compute the solution sk to (5.33). If Mk

does not fulfill f(xk + sk) ≤ ϕk(s
k), we increase Mk by two. We define Mk = 2Mk

and repeat this scheme until f(xk + sk) ≤ ϕk(s
k). Since ∇2f is Lipschitz continuous

with Lipschitz constant L > 0, we have Mk ≤ 2L. Once we have found Mk such that
f(xk + sk) ≤ ϕk(s

k), we define Mk+1 := max{L0,Mk/2} as our estimate of L for the
next iteration. This definition ensures that our estimate of L may also be decreased.
The outlined approach is one method to implement the first step of the cubic Newton
method. Other schemes are possible.

Our next goal is to establish convergence rates for the cubic Newton method. We now
analyze basic properties of the cubic subproblem.

Proposition 5.30. Let M > 0, let g ∈ Rn, and let H ∈ Rn×n be a symmetric matrix.
We consider

min
s∈Rn

gT s+ (1/2)sTHs+ (M/6)∥s∥32. (5.34)

Then
1. The problem (5.34) has a global solution.
2. A point s∗ is a global solution to (5.34) if and only if

g +Hs∗ + (M/2)∥s∗∥2s∗ = 0, and

H + (M/2)∥s∗∥2I is positive semidefinite.
(5.35)

3. If s∗ satisfies (5.35), then

gT s∗ + (1/2)(s∗)THs∗ + (M/6)∥s∗∥32 ≤ −(M/12)∥s∗∥32. (5.36)
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Proof. Let us define ϕ(s) = gT s + (1/2)sTHs + (M/6)∥s∥32. This function is twice
continuously differentiable and we have

∇ϕ(s) = g +Hs+ (M/2)∥s∥2s, ∇2ϕ(s) = H + (M/2)∥s∥2I +
M

2∥s∥2
ssT .

1. SinceM > 0, we have ϕ(s) → ∞ as ∥s∥2 → ∞. Hence the level set {s ∈ Rn : ϕ(s) ≤
ϕ(s0)} for all s0 ∈ Rn is bounded. It is also closed as ϕ is continuous. Consequently, ϕ
has a global minimizer.

2. Let s∗ be a global solution to (5.34). Then the second-order necessary optimality
conditions for unconstrained minimization ensure ∇ϕ(s∗) = 0 and that ∇2ϕ(s∗) is semi-
positive definite. Now let d ∈ Rn. We have to show that dT (H + (M/2)∥s∗∥2I)d ≥ 0. If
dT s∗ = 0, then we have 0 ≤ dT∇2ϕ(s∗)d = dT (H + (M/2)∥s∗∥2I)d. Now let dT s∗ < 0
and define

t = −2dT s∗

∥d∥22
.

We have t > 0 and

∥s∗ + td∥22 = ∥s∗∥22 + 2tdT s∗ + t2∥d∥22 = ∥s∗∥22.

Let us also define q(s) = gT s+ (1/2)sTHs. We have ϕ(s) = q(s) + (M/6)∥s∥32. Since s∗
is a global solution to (5.34), and ∥s∗ + td∥2 = ∥s∗∥2, we have

0 ≤ ϕ(s∗ + td)− ϕ(s∗) = q(s∗ + td)− q(s∗).

Since ∇ϕ(s∗) = 0, we also have

(g +Hs∗)Td = −(M/2)∥s∗∥2dT s∗.

A second-order Taylor’s expansion of q about s∗ yields

0 ≤ q(s∗ + td)− q(s∗) = t∇q(s∗)Td+ (1/2)t2dTHd

= t(g +Hs∗)Td+ (1/2)t2dTHd

= −t(M/2)∥s∗∥2dT s∗ + (1/2)t2dTHd

= t2(M/4)∥s∗∥2∥d∥22 + (1/2)t2dTHd

= (1/2)t2dT (H + (M/2)∥s∗∥2I)d.

Since t > 0, we deduce dT (H + (M/2)∥s∗∥2I)d ≥ 0 for all dT s∗ ≤ 0. Since (−d)T (H +
(M/2)∥s∗∥2I)(−d) = dT (H + (M/2)∥s∗∥2I)d, we obtain dT (H + (M/2)∥s∗∥2I)d ≥ 0 for
all d ∈ Rn. Putting together the pieces, we obtain (5.35).

Let s∗ satisfy (5.35). Define λ := (M/2)∥s∗∥2. Fix h ∈ Rn, and define d := h − s∗.
Using a second-order Taylor’s expansion and (5.35),

q(h)− q(s∗) = ∇q(s∗)Td+ (1/2)dTHd = −λ(s∗)Td+ (1/2)dTHd ≥ −λ(s∗)Td− (λ/2)dTd

= (−λ/2)(∥h∥22 − ∥s∗∥22).
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Hence

ϕ(h)− ϕ(s∗) = q(h)− q(s∗) + (M/6)∥h∥22 − (M/6)∥s∗∥22
≥ −(M/4)∥s∗∥2(∥h∥22 − ∥s∗∥22) + (M/6)∥h∥32 − (M/6)∥s∗∥32.

The latter expression is nonnegative.
3. Using (5.35), we compute

ϕ(s∗) = (−Hs∗ − (M/2)∥s∗∥2Is∗)T s∗ + (1/2)(s∗)THs∗ + (M/6)∥s∗∥32
= −(1/2)(s∗)T (H + (M/2)∥s∗∥2s∗I)T s∗ − (M/12)∥s∗∥32
≤ −(M/12)∥s∗∥32.

Proposition 5.30 shows that the conditions (5.35) are necessary and sufficient optimal-
ity conditions for the generally nonconvex problem (5.34).
We are now ready to establish convergence rates of the cubic Newton method. Let us

define the error measure

µ(x) := max

{√
2

3L
∥∇f(x)∥2,−

1

2L
λmin(∇2f(x))

}
.

The function µ measures in some sense the violation of the second-order necessary opti-
mality conditions for unconstrained minimization. In particular, x∗ satisfies the second-
order necessary optimality conditions ∇f(x∗) = 0 and λmin(∇2f(x∗)) ≥ 0 if and only if
µ(x∗) = 0. We also have for all x ∈ Rn,

∥∇f(x)∥2 ≤
3L

2
µ(x)2 and λmin(∇2f(x)) ≥ −2Lµ(x).

Theorem 5.31. Let f : Rn → R be twice differentiable and let ∇2f be Lipschitz con-
tinuous with Lipschitz constant L > 0. Suppose that f is bounded from below by f∗,
that is, f(x) ≥ f∗ for all x ∈ Rn. Then Algorithm 5.29 generates a sequence (xk) with
f(xk+1) ≤ f(xk) for all k ∈ N and for all K ∈ N,

min
0≤k≤K

µ(xk) ≤
(
12

L0

f(x0)− f∗

K

)1/3

.

Proof. Using (5.36), we find that

f(xk+1) = f(xk + sk) ≤ ϕk(s
k) ≤ f(xk)− (Mk/12)∥sk∥32 ≤ f(xk).

Combined with Mk ≥ L0,

f(x0)− f∗ ≥
K∑
k=0

[f(xk)− f(xk+1)] ≥
K∑
k=0

Mk

12
∥sk∥32 ≥

L0

12
· (K + 1) min

0≤k≤K
∥sk∥32.
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Using (5.35), we have

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)sk − (Mk/2)∥sk∥2sk︸ ︷︷ ︸
=0 (see (5.35))

.

Combined with Lemma 5.19, xk+1 = xk + sk, Mk ≤ 2L, and the triangle inequality, we
find that

∥∇f(xk+1)∥2 ≤ (L/2)∥sk∥22 + (Mk/2)∥sk∥22 ≤ (L/2)∥sk∥22 + L∥sk∥22 = (3/2)L∥sk∥22.

Hence

(2/(3L))∥∇f(xk+1)∥2 ≤ ∥sk∥22.

The optimality conditions in (5.35) further ensure that

∇2f(xk) + (Mk/2)∥sk∥2I

is positive definite. Moreover, ∥∇2f(xk+1) − ∇2f(xk)∥2 ≤ L∥sk∥2. Combined with
(5.19), and Mk ≤ 2L,

λmin(∇2f(xk+1)) ≥ λmin(∇2f(xk))− L∥sk∥2 ≥ −L∥sk∥2 − (Mk/2)∥sk∥2 ≥ −2L∥sk∥2.

In other words,

−(1/(2L))λmin(∇2f(xk+1)) ≤ ∥sk∥2.

Hence

µ(xk+1) = max

{√
2

3L
∥∇f(xk+1)∥2,−

1

2L
λmin(∇2f(xk+1))

}
≤ ∥sk∥2.

Combined with (
12

L0

f(x0)− f∗

K + 1

)1/3

≥ min
0≤k≤K

∥sk∥2.

We obtain

min
0≤k≤K

µ(xk+1) ≤
(
12

L0

f(x0)− f∗

K + 1

)1/3

.

Theorem 5.31 ensures in particular that min0≤i≤k ∥∇f(xi)∥ decreases with a rate
proportional to 1/k2/3. The gradient method has the much slower convergence rate
1/k1/2 (see Theorem 5.6). Using Theorem 5.31, we can show that each accumulation
point x∗ of a sequence generated by the cubic Newton method (xk) satisfies the second-
order necessary optimality conditions: ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.
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Theorem 5.31 can be generalized to requiring ∇2f being Lipschitz continuous only on
the level set {x ∈ Rn : f(x) ≤ f(x0)}.
The cubic Newton method requires the solution of the subproblems (5.33). It turns

out that these subproblems can efficiently be solved to global optimality. This is a deep
fact. Figure 5.6 depicts a graph of an objective function of the cubic subproblem. This
function has one local, nonglobal minimizer. Generally, the cubic subproblem can have
many local, nonglobal minimizer. We are about to present an algorithm for computing
global solutions to it.

s

Figure 5.6: Graph of the function ϕ(s) = |s|3 − 3s2 − s. It has one local, nonglobal
minimizer.

We derive a solution method for the solution of the cubic subproblem (5.34), where
M > 0 and H is symmetric. Let us define ρ =M/6 and Q = (1/2)H. We define

ϕ(s) = gT s+ sTQs+ ρ∥s∥32.

1. We start computing the eigenvalue decomposition Q = UDUT of Q. Here U ∈
Rn×n is orthogonal and D is a diagonal matrix with the eigenvalues µi of D as
diagonal entries. Passing from the variables s to y = UT s, we reduce the problem
of minimizing ϕ over s ∈ Rn to the problem of minimizing ψ defined by

ψ(y) = bT y +
n∑
i=1

µiy
2
i + ρ

( n∑
i=1

y2i

)3/2

over y ∈ Rn, where b = UT g.

2. If y∗ is a global minimizer of ψ, then the signs of y∗i are opposite to those of bi,
that is, biyi ≤ 0. Otherwise, we could reduce the objective function value if we
replace y∗i with −y∗i . Thus minimizing ψ over y ∈ Rn is equivalent to minimizing
the function

ω(z) = −
n∑
i=1

|bi|zi +
n∑
i=1

µiz
2
i + ρ

( n∑
i=1

z2i

)3/2
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over z ≥ 0. A minimizer z∗ of ω over z ≥ 0 provides us with a global minimizer
y∗ of ψ via y∗i = −sign(bi)z

∗
i .

3. Finally, minimizing ω over z ≥ 0 via substitution of the variables zi =
√
ζi reduces

to minimizing the function

χ(ζ) =
n∑
i=1

[
µiζi − |bi|

√
ζi

]
+ ρ

( n∑
i=1

ζi

)3/2

over ζ ≥ 0. Note that the function ζ is convex over ζ ≥ 0.

To solve this optimization problem, we rewrite it equivalently as

min
ζ,r

n∑
i=1

[
µiζi − |bi|

√
ζi

]
+ ρr3/2 s.t. r ≥ 0, ζ ≥ 0,

n∑
i=1

ζi ≤ r.

The Lagrange function L of this problem is given by

L(ζ, r, λ) =

[
(µi + λ)ζi − |bi|

√
ζi

]
+ ρr3/2 − λr,

where λ ∈ R, Note that we “dualize” only the constraint
∑n

i=0 ζi ≤ r. Given
λ ≥ 0 and assuming |bi| > 0, we can minimize the Lagrange function L over λ ≥ 0
and r ≥ 0. The minimizers ζ(λ) and r(λ) are unique and depend continuously
on λ (provided that |bi| > 0). As a result, we can rapidly solve by bisection the
Lagrange dual

max
λ≥0

min
ζ≥0,r≥0

L(ζ, r, λ).

Given a solution to the dual problem λ∗, we obtain the minimizer of χ via ζ∗ =
ζ(λ∗).
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5.8 Exercises

Exercise 5.1 (Gradient descent with constant step size I).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L ≥ 0. Let f∗ be the optimal value of minx∈Rn f(x) and suppose
that f∗ is finite.

We consider the gradient descent method, Algorithm 5.1, with constant step size
γk = γ.
Show that if 0 < γ < (2/L), then for all K ∈ N, the sequence generated by the

gradient descent satisfies

min
0≤k≤K

∥∇f(xk)∥22 ≤
1

γ(1− Lγ/2)(K + 1)
· (f(x0)− f∗).

You can establish your own proof or solve the following subproblems.

1. Show that for all k ∈ N,

f(xk+1) ≤ f(xk)− γ(1− Lγ/2)∥∇f(xk)∥22.

Hint: Use the descent lemma.

2. Show that

γ(1− Lγ/2)

K∑
k=0

∥∇f(xk)∥22 ≤ f(x0)− f(xK+1).

3. Deduce the convergence rate.

Exercise 5.2 (Gradient descent with constant step size II).
Let f : Rn → R be convex, differentiable and let its gradient ∇f be Lipschitz continuous
with Lipschitz constant L > 0. Let x∗ be a solution to minx∈Rn f(x).
We consider the gradient descent method, Algorithm 5.1, with constant step size

γk = γ. Show that if 0 < γ < (2/L), then for all k ∈ N,

f(xk)− f(x∗) ≤ ∥x∗ − x0∥22
(k + 1)γ(2− Lγ)

.

You can establish your own proof or solve the following subproblems.

1. Define rk = ∥xk − x∗∥2. Show that

r2k+1 ≤ r2k − γ(2− Lγ)∇f(xk)T (xk − x∗).

Hint : Review the proof of Theorem 5.7, and use the fact that for all x, y ∈ Rn,

∥∇f(x)−∇f(y)∥22 ≤ L(∇f(x)−∇f(y))T (x− y).

(This estimate is established in Exercise 5.8.)
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2. Show that

γ(2− Lγ)
[
f(xk)− f(x∗)

]
≤ r2k − r2k+1.

3. Show that for all k ∈ N,

f(xk+1) ≤ f(xk)− γ(1− Lγ/2)∥∇f(xk)∥22 ≤ f(xk).

4. Deduce the convergence rate.

Exercise 5.3 (Gradient descent applied strongly convex quadratic functions).
Let f : Rn → R by defined by f(x) := (1/2)xTAx− bTx, where A ∈ Rn×n is symmetric
positive definite and b ∈ Rn.

1. Show that ∇f(x) = Ax− b.

2. Show that ∇f is Lipschitz continuous with Lipschitz constant L = λmax(A) (max-
imum eigenvalue) and that f is strongly convex with parameter µ = λmin(A)
(minimum eigenvalue).

3. Show that x∗ := A−1b is the unique minimizer of f .

4. We consider the gradient descent with minimization rule applied to f . Let us
define gk = Axk − b. Show that if gk ̸= 0, then

γk =
gTk gk

gTk Agk
.

5. Consider the gradient method with constant step size γk = γ > 0 applied to f . Let
L be the maximum eigenvalue of the matrix A. Show that the gradient method
with constant step size γ converges to x∗ for every starting point x0 if and only if
γ ∈ (0, 2/L).

Hint: Show that xk+1 − x∗ = (I − γA)k+1(x0 − x∗).

Exercise 5.4 (Model function-based gradient descent with adaptive step size).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L > 0. Let f∗ be the optimal value of minx∈Rn f(x) and suppose
that f∗ is finite. We define N0 := N ∪ {0}
For xk ∈ Rn and Mk > 0, we define the model function ϕk : Rn → R by

ϕk(x) := f(xk) +∇f(xk)T (x− xk) + (Mk/2)∥x− xk∥22.

We denote by xk+ the minimizer of ϕk.
We consider the following algorithm for minimizing f .
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Algorithm 5.32.

0. Choose x0 ∈ Rn and m0 ∈ (0, 2L].

For k = 0, 1, 2, . . .

1. Compute the smallest Mk ∈ {mk, 2mk, 4mk, 8mk, . . .} such that

f(xk+) ≤ ϕk(x
k
+). (5.37)

2. Define xk+1 := xk+ and mk+1 := max{m0,Mk/2}.

To analyze Algorithm 5.32, solve the following subproblems.

1. Show that for all k ∈ N0,
m0 ≤Mk ≤ 2L.

Hint: Use the descent lemma.

2. Show that for all k ∈ N0,

xk+ = xk − (1/Mk)∇f(xk).

3. Show that for all k ∈ N0,

ϕk(x
k
+) = f(xk)− 1

2Mk
∥∇f(xk)∥22.

4. Show that for all k ∈ N0,

f(xk+1) ≤ f(xk)− 1

2Mk
∥∇f(xk)∥22.

5. Show that for all k ∈ N0,

f(xk+1) ≤ f(xk)− 1

4L
∥∇f(xk)∥22.

6. Show that for all K ∈ N0,

min
0≤k≤K

∥∇f(xk)∥22 ≤
4L

(K + 1)
· (f(x0)− f∗).

7. How could we describe Algorithm 5.32 in a few words?
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Exercise 5.5 (Gradient descent with diminishing stepsize).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L ≥ 0. Let f∗ be the optimal value of minx∈Rn f(x) and suppose
that f∗ is finite.

We consider the gradient descent method, Algorithm 5.1, with diminishing stepsize:

γk > 0, γk → 0 as k → +∞, and
∞∑
k=1

γk = +∞.

Solve the following subproblems.

1. Show that there existsK ∈ N and c > 0 such that f(xk+1) ≤ f(xk)−γkc∥∇f(xk)∥22
for all k ≥ K.

2. Deduce that c
∑∞

k=K γk∥∇f(xk)∥22 ≤ f(xK)− limk→∞ f(xk) ≤ f(xK)− f∗.

3. Deduce that lim infk→∞ ∥∇f(xk)∥2 = 0.

4. Show that limk→∞ ∥∇f(xk)∥2 = 0.

Hint: If limk→∞ ∥∇f(xk)∥2 = 0 does not hold, then there exists ε > 0 such that
∥∇f(xk)∥2 ≥ 2ε for infinitely many k ∈ N. Moreover lim infk→∞ ∥∇f(xk)∥2 = 0
ensures that ∥∇f(xk)∥2 < ε for infinitely many k ∈ N. Furthermore use the fact
that ∥xm+q+1 − xm∥2 ≤

∑q
k=m γk∥∇f(x

k)∥2 is valid for all m, q ∈ N.

5. Deduce that each accumulation point of (xk) is a stationary point of f .

Exercise 5.6 (Gradient descent with minimization rule).
Establish Theorem 5.3 but with the minimization rule instead of the Armijo rule.
Hint: (i) The decrease of function values resulting from the minimization rule is at

least as large as that resulting from the Armijo rule. (ii) The solution to this exercise is
short.

Exercise 5.7 (Gradient descent with errors [4]*).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L ≥ 0. Let f∗ be the optimal value of minx∈Rn f(x) and suppose
that f∗ is finite.

We consider the following algorithm.

Algorithm 5.33.

0. Choose initial point/starting point x0 ∈ Rn and choose

γk > 0 with

∞∑
k=1

γk = +∞ and

∞∑
k=1

γ2k < +∞.
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For k = 0, 1, 2, . . .

1. Compute xk+1 = xk − γk∇f(xk) + γkw
k, where wk ∈ Rn.

Suppose that the errors wk in Algorithm 5.33 satisfies

∥wk∥2 ≤ γk(c1 + c2∥∇f(xk)∥2) for all k ∈ N,

where c1 and c2 are positive constants.
Show that each accumulation point of (xk) is a stationary point of f .

Exercise 5.8 (Convex functions with Lipschitz continuous gradients).
Let f : Rn → R be a differentiable function and let L > 0. Show that the following
statements are equivalent:

1. f is convex and its gradient is Lipschitz continuous with Lipschitz constant L.

2. For all x, y ∈ Rn,

0 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ (L/2)∥y − x∥22.

3. For all x, y ∈ Rn,

f(x) +∇f(x)T (y − x) +
1

2L
∥∇f(x)−∇f(y)∥22 ≤ f(y).

4. For all x, y ∈ Rn,

1

L
∥∇f(x)−∇f(y)∥22 ≤ (∇f(x)−∇f(y))T (x− y).

Hints: To show that the second part implies the third, define g(y) := f(y)−∇f(z)T y
(with fixed z ∈ Rn) and use the second part to deduce the estimate

g(z) ≤ g(y)− 1

2L
∥∇g(y)∥22.

Exercise 5.9.
Let f : Rn → R be strongly convex with parameter µ > 0, differentiable and let its
gradient ∇f be Lipschitz continuous with Lipschitz constant L > 0.

Show that for all x, y ∈ Rn,

1

L+ µ
∥∇f(x)−∇f(y)∥22 +

µL

L+ µ
∥x− y∥22 ≤ (∇f(x)−∇f(y))T (x− y).

You can establish your own proof or solve the following subproblems.
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1. Show that L ≥ µ.

Hints: Use Exercise 5.8 and Exercise 2.13.

2. Define ϕ(x) := f(x) + (µ/2)∥x∥22. Show that for all x, y ∈ Rn,

(∇ϕ(x)−∇ϕ(y))T (x− y) ≤ (L− µ)∥x− y∥22.

Hints: Use Exercise 5.8.

3. Deduce the estimate.

Exercise 5.10 (Gradient descent with constant step size III).
Let f : Rn → R be strongly convex with parameter µ > 0, differentiable and let its
gradient ∇f be Lipschitz continuous with Lipschitz constant L > 0. Let x∗ be a solution
to minx∈Rn f(x).
We consider the gradient descent method, Algorithm 5.1, with constant step size

γk = γ. Show that if 0 < γ ≤ 2/(L+ µ), then for all k ∈ N, the sequence generated by
the gradient descent satisfies

∥xk − x∗∥22 ≤
(
1− 2γµL

µ+ L

)k
∥x0 − x∗∥22.

Moreover show that if γ = 2/(L+ µ) then

∥xk − x∗∥2 ≤
(
κf − 1

κf + 1

)k
∥x0 − x∗∥2,

where κf = L/µ.
Hints: (i) Show that

∥xk+1 − x∗∥22 = ∥xk − x∗∥22 − 2γ∇f(xk)T (xk − x∗) + γ2∥∇f(xk)∥22.

(ii) Use Exercise 5.9.

Exercise 5.11 (Gradient descent with variable step size).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L > 0. Let f∗ be the optimal value of minx∈Rn f(x) and suppose
that f∗ is finite.

Let 0 < ϱ < 2/(2+L). We consider the gradient descent method, Algorithm 5.1, with
step size γk fulfilling

ϱ ≤ γk ≤
2(1− ϱ)

L
for all k ∈ N.
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1. Show that for each k ∈ N,

ϱ2∥∇f(xk)∥22 ≤ f(xk)− f(xk+1).

Hint: Use the descent lemma.

2. Show that for each k ∈ N,

f(xk+1) < f(xk) provided that ∇f(xk) ̸= 0.

3. Show that (f(xk)) converges to some finite number k → ∞.

4. Show that ∥∇f(xk)∥2 → 0 as k → ∞.

5. Let x̄ be an accumulation point of (xk). Show that ∇f(x̄) = 0.

Exercise 5.12 (Gradient descent with constant step size V).
We define f : Rn → R by f(x) := ∥x∥22. We consider the gradient descent method,
Algorithm 5.1, with constant step size γk = 1 and initial point x0 := (1/2, 0).

1. Show that ∥xk∥2 = 1/2 for all k ∈ N.

2. Does the previous statement contradict any of the convergence statements in Ex-
ercise 5.11?

Exercise 5.13 (Conditional gradient method for nonconvex optimization).
Let f : Rn → R be a continuously differentiable function, and let X ⊂ Rn be nonempty,
closed, bounded, and convex. We denote by DX := supx,y∈X ∥x − y∥2 the diameter of
X. Let ∇f be Lipschitz continuous on Rn with Lipschitz constant L. Suppose that f is
bounded from below on X by f∗ ∈ R.

We define the gap function gap : X → R by

gap(x) := sup
v∈X

∇f(x)T (x− v).

Algorithm

0. Choose x0 ∈ X.

For k = 0, 1, 2, . . .:

1. Compute a solution vk to

min
v∈X

∇f(xk)T v.
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2. Compute γk by

γk = min

{
1,

gap(xk)

L∥vk − xk∥22

}
if vk ̸= xk, and γk = 1 otherwise.

3. Compute xk+1 = γkv
k + (1− γk)x

k.

Solve the following subproblems.

1. Show that gap(x) ≥ 0 for all x ∈ X.

2. Fix x̄ ∈ X. Show that gap(x̄) = 0 if and only if

∇f(x̄)T (x− x̄) ≥ 0 for all x ∈ X.

3. Show that xk ∈ X for all k ∈ N.

4. Show that for all k ∈ N,

f(xk+1) ≤ f(xk)− γkgap(x
k) + (L/2)γ2k∥xk − vk∥22.

5. Show that if γk = 1 then

f(xk+1) ≤ f(xk)− gap(xk)/2.

6. Show that if γk < 1 then

f(xk+1) ≤ f(xk)− gap(xk)2

2L∥xk − vk∥22
.

7. Show that for all k ∈ N,

min
0≤ℓ≤k

gap(xℓ) ≤ max

{√
2LD2

X(f(x
0)− f∗)

k + 1
,
2(f(x0)− f∗)

k + 1

}
.

Exercise 5.14 (Conditional gradient method with backtracking linesearch).
Let f : Rn → R be a continuously differentiable function, and let X ⊂ Rn be nonempty,
closed, bounded, and convex. We denote by DX := supx,y∈X ∥x − y∥2 the diameter of
X. Let ∇f be Lipschitz continuous on Rn with Lipschitz constant L. Suppose that f is
bounded below on X by f∗ ∈ R. Let ρ ∈ (0, 1) and β ∈ (0, 1).

We define the gap function gap : X → R by

gap(x) := sup
v∈X

∇f(x)T (x− v).

Algorithm
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0. Choose x0 ∈ X.

For k = 0, 1, 2, . . .:

1. STOP if gap(xk) = 0.

2. Compute a solution vk to

min
v∈X

∇f(xk)T v.

3. Compute the largest γk ∈ {1, β, β2, β3, . . .} such that

f((1− γk)x
k + γkv

k)− f(xk) ≤ −ργkgap(xk).

4. Compute xk+1 = γkv
k + (1− γk)x

k.

Solve the following subproblems.

1. Show that the algorithm is well-defined.

2. Show that

min
0≤k≤K

gap(xk) ≤

√
LD2

X(f(x
0)− f∗)

2ρ(1− ρ)β(K + 1)
.

Hint: Review the proof of Theorem 5.6.

Exercise 5.15 (proximal gradient method [9]/composite gradient minimization).
Let f : Rn → R be differentiable and let its gradient ∇f be Lipschitz continuous with
Lipschitz constant L > 0. Moreover let ψ : Rn → R ∪ {+∞} be proper, convex, and
lower semicontinuous.
We develop a prox-gradient-type method for the solution of

min
x∈Rn

f(x) + ψ(x).

Let ϕ∗ ∈ R be its optimal value. We define ϕ(x) := f(x) + ψ(x).

Algorithm 5.34.

0. Choose initial point/starting point x0 ∈ dom(ψ), and α > 0.

For k = 0, 1, 2, . . .

1. Choose αk ≥ α and compute dk as the solution to

min
d∈Rn

∇f(xk)Td+ (αk/2)∥d− xk∥22 + ψ(d).
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2. Define sk := dk − xk.

3. Choose a step size γk ∈ [0, 1] and define xk+1 = xk + γks
k.

In order to analyze Algorithm 5.34, solve the following subproblems.

1. Show that Algorithm 5.34 is well-defined.

2. Show that for all 0 < γ ≤ 1,

ψ(xk + γsk)− ψ(xk)

γ
≤ ψ(xk + sk)− ψ(xk).

Hint: Use Exercise 2.28.

3. Show that

ϕ′(xk; sk) ≤ ∇f(xk)T sk + ψ(sk + xk)− ψ(xk).

Hints: Use the identity ϕ′(xk; sk) = ∇f(xk)T sk+ψ′(xk; sk) and use Exercise 2.28.

4. Show that

∇f(xk)T sk + ψ(sk + xk)− ψ(xk) ≤ −αk∥sk∥22.

Hints: Use the identity dk = sk + xk and the optimality conditions derived in
Exercise 2.25.

5. Let 0 < γ ≤ 1. Show that

ϕ(xk + γsk) ≤ ϕ(xk) + ((L/2)γ2 − αγ)∥sk∥22.

6. We define γ∗ := min{1, α/L}. Let γk = γ∗ for all k ∈ N. Show that

min
1≤k≤K

∥sk∥22 ≤
1

K + 1
· (ϕ(x0)− ϕ∗) ·

{
1

α−L
2

if α
L ≥ 1,

2L
α2 if α

L < 1.

7. For a convex, proper function g : Rn → R ∪ {+∞}, we define its prox-mapping by

proxg(x) := argminy∈Rn (1/2)∥y − x∥22 + g(y).

Show that

sk = prox(1/αk)ψ

(
xk − (1/αk)∇f(xk)

)
− xk.

(Compare with Exercise 2.26).

8. Show that if ψ = 0 then sk = −(1/αk)∇f(xk).

164



5 Optimization Methods for Unconstrained Optimization

Exercise 5.16 (Can a gradient method with summable step sizes converge?).
Let f : Rn → R be continuously differentiable, let x0 ∈ Rn, and let S := {x ∈ Rn : f(x) ≤
f(x0)} be bounded. Denote by C the optimal value of maxx∈S ∥∇f(x)∥2. (Why is C
finite?) We consider the algorithm xk+1 = xk − γk∇f(xk), where γk ≥ 0. Suppose that
(xk) ⊂ S and that Γ :=

∑∞
k=0 γk <∞. Let x̄ be a stationary point of f .

Note: (i) The results of this exercise have been used to construct Example 5.2. (ii)
(xk) ⊂ S is true if f(xk+1) ≤ f(xk) for all k ∈ N ∪ {0}, for example. (iii)

∑∞
k=0 γk <∞

is true if γk := c/(1 + k)2, where c > 0 is a constant, for example.

1. Show that for all k ∈ N,

∥xk+1 − x0∥2 ≤ CΓ.

This means that (xk) ⊂ cl(BCΓ(x
0)).

Hint: Use the fact that xk+1 − x0 =
∑k

i=0(x
i+1 − xi).

Note: We have cl(BCΓ(x
0)) = {x ∈ Rn : ∥x − x0∥2 ≤ CΓ} (the closed ball about

x0 with radius CΓ).

2. Show that

∥xk+1 − x̄∥2 ≥ ∥x̄− x0∥2 − CΓ.

3. Deduce that if ∥x̄− x0∥2 > CΓ then

lim inf
k→∞

∥xk+1 − x̄∥2 > 0.

Exercise 5.17 (Successive stepsize reduction rule without convergence [2, Figure 1.2.6]).
We appy the iterative scheme xk+1 = xk − γk∇f(xk) to

f(x) =


3(1−x)2

4 − 2(1− x) if x > 1,
3(1+x)2

4 − 2(1 + x) if x < −1,

x2 − 1 if − 1 ≤ x ≤ 1.

Let β ∈ (0, 1). We compute γk according to the following heuristic stepsize reduction
rule: Compute the largest γk ∈ {1, β, β2, . . .} such that

f(xk − γk∇f(xk)) < f(xk).

Let |x0| > 1.

1. How does the heuristic stepsize reduction rule differ from backtracking linesearch?

2. Show that |xk| > 1 for all k ∈ N.
Hints:
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a) Show that if x > 1 then x−∇f(x) < −1 and f(x−∇f(x)) < f(x).

b) Show that if x < −1 then x−∇f(x) > 1 and f(x−∇f(x)) < f(x).

3. Show that f is continuously differentiable and strictly convex, and show that x∗ :=
0 is the unique minimizer of f .

4. Show that no subsequence of (xk) converges to the stationary point of f . Does
this statement contradict Theorem 5.3.

Exercise 5.18 (Newton proximal extragradient (NPE) method [13, section 7]*).
Let F : Rn → Rn be monotone (that is, (F (x) − F (y))T (x − y) ≥ 0 for all x, y ∈ Rn),
and differentiable. Let F ′ (the Jacobian of F ) be Lipschitz continuous with Lipschitz
constant L > 0. Let x∗ ∈ Rn satisfy F (x∗) = 0.

Algorithm 5.35 (Newton proximal extragradient (NPE) method).

0. Let x0 ∈ Rn, and let 0 < σℓ < σu < 1.

For k = 1, 2, . . .

1. Compute λk > 0 and sk ∈ Rn such that

(F ′(xk−1) + (1/λk)I)s
k = −F (xk−1), and

2

L
σℓ ≤ λk∥sk∥2 ≤

2

L
σu.

2. Define yk = xk−1 + sk and xk = xk−1 − λkF (y
k).

Show that for all K ∈ N,

min
1≤k≤K

∥F (yk)∥2 ≤
L(1 + 1/σℓ)∥x∗ − x0∥22

2(1− σ2u)
· 1

K
.

You can establish your own proof or solve the following subproblems.

1. Show that F ′(x) is positive semidefinite for all x ∈ Rn. Deduce that the algorithm
is well-defined.

2. Show that

∥F (yk)∥2 ≤ (L/2)∥sk∥22 + (1/λk)∥sk∥2 ≤ (L/2)(1 + 1/σℓ)∥sk∥22.

Hints: (i) For all x, s ∈ Rn, we have

∥F (x+ s)− F (x)− F ′(x)s∥2 ≤ (L/2)∥s∥22.

This holds true because F ′ is L-Lipschitz continuous. (ii) Review the proof of
Theorem 5.31.
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3. Show that F ′(yk)T (yk − x∗) ≥ 0.

4. Show that

∥yk − xk∥2 = ∥λkF (yk) + yk − xk−1∥2 ≤ (Lλk/2)∥sk∥22 ≤ σu∥sk∥2.

Deduce that

(1− σu)∥sk∥2 ≤ λk∥F (yk)∥2 ≤ (1 + σu)∥sk∥2.

Hint: Define Gk(x) := λkF (x) + x− xk−1. Show that G′
k is λkL-Lipschitz contin-

uous and that G′
k(xk−1)s

k +Gk(xk−1) = 0.

5. We define rk := ∥xk − x∗∥2. Show that

r2k = r2k−1 + 2(x∗ − yk)T (xk−1 − xk) + ∥yk − xk∥22 − ∥yk − xk−1∥22.

6. Deduce that

r2k ≤ r2k−1 − (1− σ2u)∥sk∥22.

Deduce that ∥xk − x∗∥2 ≤ ∥xk−1 − x∗∥2.

7. Deduce that (1− σ2u)
∑K

k=1 ∥sk∥22 ≤ ∥x∗ − x0∥22.

8. Deduce the convergence rate.

Hint: Use part two.

Exercise 5.19 (Prox-linear method [8]).
Let g : Rn → Rm and let h : Rm → R be a continuously differentiable mappings. Let
h be convex and Lipschitz continuous with Lipschitz constant L > 0. Let the Jaco-
bian/derivative g′ of g be Lipschitz continuous with Lipschitz constant β > 0. Note that
g′(x) = ∇g(x)T for all x ∈ Rn.
We define f(x) := h(g(x)), and

φ(x; y) := h(g(x) + g′(x)(y − x)).

Let x∗ be a minimizer of f over Rn with f(x∗) ∈ R. We choose t ∈ (0, 1/(Lβ)].

Algorithm

0. Choose x0 ∈ Rn.

For k = 0, 1, 2, . . .:
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1. Compute the solution xk+1 to

min
y∈Rn

φ(xk; y) +
1

2t
∥y − xk∥22.

For each k ∈ N ∪ {0}, we define Gk(x) := (x− xk+1)/t.

1. Show that the algorithm is well-defined.

2. Fix k ∈ N. Show that ∇f(xk) = 0 if and only if xk+1 = xk.

3. Show that for all x, y ∈ Rn,

−Lβ
2

∥y − x∥22 ≤ f(y)− φ(x; y) ≤ Lβ

2
∥y − x∥22.

4. Show that for all y ∈ Rn and k ∈ N,

φ(xk; y) ≥ φ(xk;xk+1) + Gk(xk)T (y − xk) + (t/2)∥Gk(xk)∥22 +
1

2t
∥y − xk∥22.

Hint: The function y 7→ φ(xk; y) + (1/(2t))∥y − xk∥22 is strongly convex with
parameter (1/t), and xk+1 is its minimizer.

5. Show that for all y ∈ Rn, and k ∈ N,

f(y) ≥ f(xk+1) + Gk(xk)T (y − xk) +
t

2
(2− Lβt)∥Gk(xk)∥22 −

Lβ

2
∥y − xk∥22.

6. Show that for all k ∈ N,

f(xk) ≥ f(xk+1) +
t

2
(2− Lβt)∥Gk(xk)∥22.

7. Show that for all K ∈ N,

min
0≤k≤K

∥Gk(xk)∥22 ≤
2Lβ(f(x0)− f(x∗))

K + 1
.

Exercise 5.20 (Gradient descent with minimization rule as applied to functions with
Hölder continuous gradients).
Let f : Rn → R be differentiable and its gradient be ν-Hölder continuous with constant
L ∈ (0,∞), that is,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥ν2 for all x, y ∈ Rn,

where ν ∈ (0, 1].
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Let f∗ ∈ R be the optimal value of (5.1). Show that the sequence (xk) generated by
the gradient descent method with minimization rule satisfies

min
0≤k<K

∥∇f(xk)∥
1+ν
ν

2 ≤ 1 + ν

ν
· L

1/ν

K
· (f(x0)− f∗).

You may establish your own proof or solve the following subproblems.

1. Show that

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

1 + ν
∥y − x∥1+ν2 for all x, y ∈ Rn. (5.38)

Hint: Adapt the proof of Lemma 5.5.

2. Show that

min
γ≥0

{
− γa2 +

L

1 + ν
γ1+νa1+ν

}
= − ν

1 + ν
· a

1+ν
ν · L− 1

ν

where a ≥ 0.

3. Deduce the convergence rate.

Hint: Review the proof of Theorem 5.6.

Exercise 5.21 (Necessary and sufficient optimality conditions for the trust-region sub-
problem).
We consider the trust-region subproblem

min
x∈Rn

(1/2)xTAx+ bTx s.t. (1/2)∥x∥22 ≤ (1/2)∆2, (5.39)

where ∆ > 0, A ∈ Rn×n is a symmetric matrix and b ∈ Rn is a vector.

1. Show that x∗ solves (5.39) if and only if there exists λ∗ ∈ R such that

Ax∗ + λ∗x∗ + b = 0,

∥x∗∥22 ≤ ∆2, λ∗ ≥ 0, λ∗(∥x∗∥22 −∆2) = 0,

A+ λ∗I is positive semidefinite.

2. Provide a condition ensuring uniqueness of solutions to (5.39).

Exercise 5.22 (Necessary optimality conditions for cubic subproblem).
Use the necessary and sufficient optimality conditions for trust-region subproblems to
show that if s∗ solves (5.34), then the conditions in (5.35) hold true.
Hint : If s∗ solves (5.34), then it satisfies the first-order necessary optimality conditions,

and solves the trust-region subproblem

min
s∈Rn

gT s+ (1/2)sTHs s.t. ∥s∥2 ≤ ∥s∗∥2.
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Materials will be added at a later point in time.
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